Reputation: 13510
I have a pandas dataframe which looks like the following:
0 1
0 2
2 3
1 4
What I want to do is the following: if I get 2 as input my code is supposed to search for 2 in the dataframe and when it finds it returns the value of the other column. In the above example my code would return 0 and 3. I know that I can simply look at each row and check if any of the elements is equal to 2 but I was wondering if there is one-liner for such a problem.
UPDATE: None of the columns are index columns.
Thanks
Upvotes: 8
Views: 55525
Reputation: 467
df = pd.DataFrame({'A': [0, 0, 2, 1], 'B': [1,2,3,4]})
t = [df.loc[lambda df: df['A'] == 3]]
t
Upvotes: 0
Reputation: 215047
You may need this:
n_input = 2
df[(df == n_input).any(1)].stack()[lambda x: x != n_input].unique()
# array([0, 3])
Upvotes: 4
Reputation: 12515
>>> df = pd.DataFrame({'A': [0, 0, 2, 1], 'B': [1,2,3,4]})
>>> df
A B
0 0 1
1 0 2
2 2 3
3 1 4
The following pandas syntax is equivalent to the SQL SELECT B FROM df WHERE A = 2
>>> df[df['A'] == 2]['B']
2 3
Name: B, dtype: int64
There's also pandas.DataFrame.query
:
>>> df.query('A == 2')['B']
2 3
Name: B, dtype: int64
Upvotes: 18