mllamazares
mllamazares

Reputation: 8166

How can I create a new column with a conditional cumulative sum using pandas?

The following code creates a random dataframe with values -1, 0 or 1:

df = pd.DataFrame(np.random.randint(-1,2,size=(100, 1)), columns=['val'])

print(df['val'].value_counts())

Let's see what it contains:

-1    36
 0    35
 1    29
Name: val, dtype: int64

Then, I'm trying to create a new column called mysum with a cumulative conditional sum which following the next rules:

So I'm afraid it is not as simple as:

df['mysum'] = df['val'].cumsum()

So I tried the following:

df['mysum'] = 0

df['mysum'] = np.where((df['val'] == 1) & (df['mysum'].cumsum() >= 0), (df['mysum'].cumsum() + 1), df['mysum'].cumsum())
df['mysum'] = np.where((df['val'] == 1) & (df['mysum'].cumsum() < 0), (df['mysum'].cumsum() + 2), df['mysum'].cumsum())

df['mysum'] = np.where((df['val'] == -1) & (df['mysum'].cumsum() <= 0), (df['mysum'].cumsum() - 1), df['mysum'].cumsum())
df['mysum'] = np.where((df['val'] == -1) & (df['mysum'].cumsum() > 0), (df['mysum'].cumsum() - 2), df['mysum'].cumsum())

df['mysum'] = np.where((df['val'] == 0) & (df['mysum'].cumsum() > 0), (df['mysum'].cumsum() - 1), df['mysum'].cumsum())
df['mysum'] = np.where((df['val'] == 0) & (df['mysum'].cumsum() < 0), (df['mysum'].cumsum() + 1), df['mysum'].cumsum())


print(df['mysum'].value_counts())
print(df)

But the column mysum is not accumulating!

Here is a fiddle where you can try: https://repl.it/FaXZ/8

Upvotes: 1

Views: 654

Answers (2)

tillmo
tillmo

Reputation: 616

A much more efficient solution, see also generalized cumulative functions in NumPy/SciPy? :

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.randint(-1, 2, size=(100, 1)), columns=['val'])
def my_sum(acc,x):
    if x == 0 and acc < 0:
        return acc + 1
    if x == 1 and acc < 0:
        return acc + 2
    if x == -1 and acc <= 0:
        return acc - 1
    if x == 0 and acc > 0:
        return acc - 1
    if x == -1 and acc > 0:
        return acc - 2
    if x == 1 and acc >= 0:
        return acc + 1
    if x == 0 and acc == 0:
        return acc
u_my_sum = np.frompyfunc(my_sum, 2, 1)
df['mysum'] = u_my_sum.accumulate(df.val, dtype=np.object).astype(np.int64)
print(df)

Upvotes: 1

Karl Anka
Karl Anka

Reputation: 2859

Maybe there exists a more condensed solution, but you can loop through the dataframe and set values according to your conditions.

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.randint(-1, 2, size=(100, 1)), columns=['val'])

df['mysum'] = 0

for index, row in df.iterrows():

    # get the current value of mysum = mysum one row above current index
    mysum = df.get_value(index - 1, 1, takeable=True)

    # mysum at beginning is 0
    if index == 0:
        mysum = 0

    # set values at current index according to conditions
    if row[0] == 0 and mysum < 0:
        df.set_value(index, 1, mysum + 1, takeable=True)
    if row[0] == 1 and mysum < 0:
        df.set_value(index, 1, mysum + 2, takeable=True)
    if row[0] == -1 and mysum <= 0:
        df.set_value(index, 1, mysum - 1, takeable=True)
    if row[0] == 0 and mysum > 0:
        df.set_value(index, 1, mysum - 1, takeable=True)
    if row[0] == -1 and mysum > 0:
        df.set_value(index, 1, mysum - 2, takeable=True)
    if row[0] == 1 and mysum >= 0:
        df.set_value(index, 1, mysum + 1, takeable=True)
    if row[0] == 0 and mysum == 0:
        df.set_value(index, 1, mysum, takeable=True)

print df

Upvotes: 1

Related Questions