Reputation: 674
I have a code which is as follows:
data = np.array([[[i, j], i * j] for i in range(10) for j in range(10)])
print(data)
x = np.array(data[:,0])
x1 = x[:,0]
x2 = x[:,1]
print(x)
data
correctly outputs [[[0,0],0],[[0,1],0],[[0,2],0],...,[[9,9],81]]
which is, by the way, the multiplication table and it's results.
So, the first column of the data
(which is x
) must be separated into x1
and x2
, which are the first and last column of it respectively. Which I think I did it right but it raises an error saying too many indices for array
. What am I doing wrong?
Upvotes: 0
Views: 392
Reputation: 18628
data.dtype
is object
because the elements of [[i,j],k]
are not homogeneous. A workaround for you :
data = np.array([(i, j, i * j) for i in range(10) for j in range(10)])
print(data)
x1 = data[:,:2]
x2 = data[:,2]
data.shape
is now (100,3)
, data.dtype
is int
and x1
and x2
what you want.
Upvotes: 1
Reputation: 231335
Because of the mix of list lengths, this produces an object array:
In [97]: data = np.array([[[i, j], i * j] for i in range(3) for j in range(3)])
In [98]: data
Out[98]:
array([[[0, 0], 0],
[[0, 1], 0],
[[0, 2], 0],
[[1, 0], 0],
[[1, 1], 1],
[[1, 2], 2],
[[2, 0], 0],
[[2, 1], 2],
[[2, 2], 4]], dtype=object)
In [99]: data.shape
Out[99]: (9, 2)
One column contains numbers (but is still object dtype), the other lists. Both have (9,) shape
In [100]: data[:,1]
Out[100]: array([0, 0, 0, 0, 1, 2, 0, 2, 4], dtype=object)
In [101]: data[:,0]
Out[101]:
array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1],
[2, 2]], dtype=object)
The easiest way of turning that column into a numeric arrays is via .tolist
In [104]: np.array(data[:,0].tolist())
Out[104]:
array([[0, 0],
[0, 1],
[0, 2],
[1, 0],
[1, 1],
[1, 2],
[2, 0],
[2, 1],
[2, 2]])
In [105]: _.shape
Out[105]: (9, 2)
The [i, j, i * j]
elements as suggested in the other answer are easier to work with.
A structured array approach to generating such a 'table':
In [113]: dt='(2)int,int'
In [114]: data = np.array([([i, j], i * j) for i in range(3) for j in range(3)],
...: dtype=dt)
In [115]: data
Out[115]:
array([([0, 0], 0), ([0, 1], 0), ([0, 2], 0), ([1, 0], 0), ([1, 1], 1),
([1, 2], 2), ([2, 0], 0), ([2, 1], 2), ([2, 2], 4)],
dtype=[('f0', '<i4', (2,)), ('f1', '<i4')])
In [116]: data['f0']
Out[116]:
array([[0, 0],
[0, 1],
[0, 2],
[1, 0],
[1, 1],
[1, 2],
[2, 0],
[2, 1],
[2, 2]])
In [117]: data['f1']
Out[117]: array([0, 0, 0, 0, 1, 2, 0, 2, 4])
Upvotes: 1