Reputation: 2847
Using tensorflow, I have an LSTM classification model with a softmax as the final node.
This is my softmax layer:
with tf.name_scope("Softmax") as scope:
with tf.variable_scope("Softmax_params"):
softmax_w = tf.get_variable("softmax_w", [hidden_size, num_classes])
softmax_b = tf.get_variable("softmax_b", [num_classes])
logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) # Predicted label, eg y = tf.matmul(X, W) + b)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.labels,
logits=logits,
name='softmax')
My question is when evaluating this model with novel data, how can I extract the probabilities for each class?
num_class = 129
for i in range(runs):
X_batch, y_batch = sample_batch(X_test[:200], y_test[:200], batch_size)
predictions = sess.run([model.logits], feed_dict = {model.input: X_batch, model.keep_prob: 1.0})
Upvotes: 2
Views: 4861
Reputation: 2364
Just add the line
probs = tf.nn.softmax(logits)
Then do
predictions = sess.run(model.probs, feed_dict=feed_dict)
Upvotes: 4