Reputation: 24905
First of all my apologies to those of you who would have followed my questions posted in the last few days. This might sound a little repetitive as I had been asking questions related to -ffunction-sections & -fdata-sections and this one is on the same line. Those questions and their answers didn't solve my problem, so I realized it is best for me to state the full problem here and let SO experts ponder about it. Sorry for not doing so earlier.
So, here goes my problem:
I build a set of static libraries which provide a lot of functionalities. These static libraries will be provided to many products. Not all products will use all of the functionalities provided by my libs. The problem is that the library sizes are quite big and the products want it to be reduced. The main goal is to reduce the final executable size and not the library size itself.
Now, I did some research and found out that, if there are 4 functions in a source file and only one function of that is used by the application, the linker will still include the rest of the 3 functions into the final executable as they all belong to the same object file. I further analyzed and found that -ffunction-sections, -fdata-sections and -gc-sections(this one is a linker option) will ensure only that one function gets linked.
But, these options for some reasons beyond my control cannot be used now.
Is there any other way in which I can ensure that the linker will link only the function which is strictly required and exclude all other functions even if they are in the same object file?
Are there any other ways of dealing with the problem?
Note: Reorganizing my code is almost ruled out as it is a legacy code and big.
I am dealing mainly with VxWorks & GCC here.
Thanks for any help!
Upvotes: 0
Views: 926
Reputation: 754110
Ultimately, the only way to ensure that only the functions you want are linked is to ensure that each source (object) file in the library only exports one function symbol - one (visible) function per file. Typically, there are some files which export several functions which are always all used together - the initialization and finalization functions for a package, for example. Also, there are often functions used by the exported function that do not need to be visible outside the source (object) file - make sure they are static
.
If you looked at Plauger's "The Standard C Library", you'll find that every function is implemented in a separate file, even if the file ends up 4 lines long (one header, one function line, an open brace, one line of code, and a close brace).
Jay asked:
In the case of a big project, doesn't it become difficult to manage with so many files? Also, I don't find many open source projects following this model. OpenSSL is one example.
I didn't say it was widely used - it isn't. But it is the way to make sure that binaries are minimized. The compiler (linker) won't do the minimization for you - at least, I'm not aware of any that do. On a large project, you design the source files so that closely related functions that will normally all be used together are grouped in single source files. Functions that are only occasionally used should be placed in separate files. Ideally, the rarely used functions should each be in their own file; failing that, group small numbers of them into small (but non-minimal) files. That way, if one of the rarely used functions is used, you only get a limited amount of extra unused code linked.
As to number of files - yes, the technique espoused does mean a lot of files. You have to weigh the workload of managing (naming) lots of files against the benefit of minimal code size. Automatic build systems remove most of the pain; VCS systems handle lots of files.
Another alternative is to put the library code into a shared object - or dynamic link library (DLL). The programs then link with the shared object, which is loaded into memory just once and shared between programs using it. The (non-constant) data is replicated for each process. This reduces the size of the programs on disk, at the cost of fixups during the load process. However, you then don't need to worry about executable size; the executables do not include the shared objects. And you can update the library (if you're careful) without recompiling the main programs that use it. The reduced size of the executables is one reason shared libraries are popular.
Upvotes: 3