Reputation: 496
I have a dataframe as follows:
name tag price
0 x1 tweak1 1.1
1 x1 tweak2 1.2
2 x1 base 1.0
3 x2 tweak1 2.1
4 x2 tweak2 2.2
5 x2 base 2.0
I want to subtract the base price from price column and create a new column as follows:
name tag price sensitivity
0 x1 tweak1 1.1 0.1
1 x1 tweak2 1.2 0.2
2 x1 base 1.0 0.0
3 x2 tweak1 1.3 -0.7
4 x2 tweak2 2.4 0.4
5 x2 base 2.0 0.0
and eventually drop the rows with tag base to get
name tag price sensitivity
0 x1 tweak1 1.1 0.1
1 x1 tweak2 1.2 0.2
3 x2 tweak1 1.3 -0.7
4 x2 tweak2 2.4 0.4
What is the best way to perform this operation in pandas?
Upvotes: 3
Views: 573
Reputation: 294506
I'd start by making your index from the 'name'
and 'tag'
columns.
Then I'd subtract the 'base'
cross section. Pandas will align for us.
Finally, use assign
+ drop
+ reset_index
for bookkeeping and formatting.
p = df.set_index(['name', 'tag'])[['price']]
p.assign(sensitivity=p - p.xs('base', level=1)).drop('base', level=1).reset_index()
name tag price sensitivity
0 x1 tweak1 1.1 0.1
1 x1 tweak2 1.2 0.2
2 x2 tweak1 1.3 -0.7
3 x2 tweak2 2.4 0.4
Upvotes: 2
Reputation: 5146
Here is how I would tackle it:
1) Create a column for base
2) Subtract those columns
3) Drop the base (no pun intended)
import pandas as pd
import numpy as np
# Creates a column 'Base' If 'Tag' is base and use the value from price
# if 'Tag' is not base, use 0
df['Base'] = np.where(df.tag.isin(['base']), df['Price'] ,0)
# takes the difference of the two columns
df['difference'] = df['Price'] - df['Base']
# Creates a new DF that uses all values except when 'Tag' is base
df3 = df[df['Tag'] !='Base']
print(df3)
Here is the Example I used to come up with my code. Feel free to follow if you wish:
import re
import pandas as pd
import numpy as np
df = pd.DataFrame({'A' : [1,1,3,4,5,5,3,1,5,np.NaN],
'B' : [1,np.NaN,3,5,0,0,np.NaN,9,0,0],
'C' : ['AA1233445','AA1233445', 'rmacy','Idaho Rx','Ab123455','TV192837','RX','Ohio Drugs','RX12345','USA Pharma'],
'D' : [123456,123456,1234567,12345678,12345,12345,12345678,123456789,1234567,np.NaN],
'E' : ['Assign','Unassign','Assign','Ugly','Appreciate','Undo','Assign','Unicycle','Assign','Unicorn',]})
print(df)
df['Base'] = np.where(df.E.isin(['Assign']), df['A'] ,0)
df['difference'] = df['B'] - df['Base']
df3 = df[df['E'] !='Assign']
output:
A B C D E Base difference
1 1.0 NaN AA1233445 123456.0 Unassign 0.0 NaN
3 4.0 5.0 Idaho Rx 12345678.0 Ugly 0.0 5.0
4 5.0 0.0 Ab123455 12345.0 Appreciate 0.0 0.0
5 5.0 0.0 TV192837 12345.0 Undo 0.0 0.0
7 1.0 9.0 Ohio Drugs 123456789.0 Unicycle 0.0 9.0
9 NaN 0.0 USA Pharma NaN Unicorn 0.0 0.0
Upvotes: 1
Reputation: 215117
You can try this:
(df.groupby('name', group_keys=False)
.apply(lambda g: g.assign(sensitivity = g.price - g.price[g.tag == "base"].values))
[lambda x: x.tag != "base"])
Or another option, pivot table to wide format, do the subtraction and then transform it back to long format:
wide_df = df.pivot_table(['price'], 'name', 'tag')
(wide_df.sub(wide_df[('price', 'base')], axis=0)
.drop(('price', 'base'), 1).stack(level=1)
.reset_index())
Upvotes: 2