Reputation: 1934
Working with census data, I want to replace NaNs in two columns ("workclass" and "native-country") with the respective modes of those two columns. I can get the modes easily:
mode = df.filter(["workclass", "native-country"]).mode()
which returns a dataframe:
workclass native-country
0 Private United-States
However,
df.filter(["workclass", "native-country"]).fillna(mode)
does not replace the NaNs in each column with anything, let alone the mode corresponding to that column. Is there a smooth way to do this?
Upvotes: 10
Views: 23838
Reputation: 9806
You can also use the SimpleImputer to solve this problem as follows:
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy='most_frequent', missing_values=np.nan)
df[["workclass", "native-country"]] = imputer.fit_transform(df[["workclass", "native-country"]])
Upvotes: 0
Reputation: 51
This code impute mean to the int columns and mode to the object columns making a list of both types of columns and imputing the missing value according to the conditions.
cateogry_columns=df.select_dtypes(include=['object']).columns.tolist()
integer_columns=df.select_dtypes(include=['int64','float64']).columns.tolist()
for column in df:
if df[column].isnull().any():
if(column in cateogry_columns):
df[column]=df[column].fillna(df[column].mode()[0])
else:
df[column]=df[column].fillna(df[column].mean)`
Upvotes: 0
Reputation: 425
I think it's cleanest to use a dict as the fillna parameter 'value'
ref: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html
create a toy df from @miriam-farber's response
import pandas as pd
d={
'key3': [1,4,4,4,5],
'key2': [6,6,4],
'key1': [6,4,4],
}
d_df=pd.DataFrame.from_dict(d,orient='index').transpose()
create a dict
mode_dict = d_df.loc[:,['key2','key1']].mode().to_dict('records')[0]
use this dict in fillna method
d_df.fillna(mode_dict, inplace=True)
Upvotes: 0
Reputation: 19634
You can do it like that:
df[["workclass", "native-country"]]=df[["workclass", "native-country"]].fillna(value=mode.iloc[0])
For example,
import pandas as pd
d={
'key3': [1,4,4,4,5],
'key2': [6,6,4],
'key1': [6,4,4],
}
df=pd.DataFrame.from_dict(d,orient='index').transpose()
Then df
is
key3 key2 key1
0 1 6 6
1 4 6 4
2 4 4 4
3 4 NaN NaN
4 5 NaN NaN
Then by doing:
l=df.filter(["key1", "key2"]).mode()
df[["key1", "key2"]]=df[["key1", "key2"]].fillna(value=l.iloc[0])
we get that df
is
key3 key2 key1
0 1 6 6
1 4 6 4
2 4 4 4
3 4 6 4
4 5 6 4
Upvotes: 4
Reputation: 863291
If you want to impute missing values with the mode
in some columns a dataframe df
, you can just fillna
by Series
created by select by position by iloc
:
cols = ["workclass", "native-country"]
df[cols]=df[cols].fillna(df.mode().iloc[0])
Or:
df[cols]=df[cols].fillna(mode.iloc[0])
Your solution:
df[cols]=df.filter(cols).fillna(mode.iloc[0])
Sample:
df = pd.DataFrame({'workclass':['Private','Private',np.nan, 'another', np.nan],
'native-country':['United-States',np.nan,'Canada',np.nan,'United-States'],
'col':[2,3,7,8,9]})
print (df)
col native-country workclass
0 2 United-States Private
1 3 NaN Private
2 7 Canada NaN
3 8 NaN another
4 9 United-States NaN
mode = df.filter(["workclass", "native-country"]).mode()
print (mode)
workclass native-country
0 Private United-States
cols = ["workclass", "native-country"]
df[cols]=df[cols].fillna(df.mode().iloc[0])
print (df)
col native-country workclass
0 2 United-States Private
1 3 United-States Private
2 7 Canada Private
3 8 United-States another
4 9 United-States Private
Upvotes: 16