Reputation: 7404
I have some data shown below
date over bed.bath
1 2016-03-17 -0.002352941 1 bed 1 bath
2 2016-03-17 -0.035294118 1 bed 1 bath
3 2016-03-17 -0.008278717 1 bed 1 bath
4 2016-03-17 -0.008350731 1 bed 1 bath
5 2016-03-17 0.004243281 1 bed 2 bath
6 2016-03-17 0.007299270 2 bed 2 bat
The bed.bath
column is a character
. I'd like to extract the information about bed and bath separately. I've tried splitting the string and extracting out the numbers like so
getbeds <- function(x){
splits = strsplit(x," ")
return(splits[[1]][1])
}
However, when I use df<- df%>% mutate(beds = getbeds(bed.bath))
, the new column is just 1s.
date over bed.bath beds
1 2016-03-17 -0.002352941 1 bed 1 bath 1
2 2016-03-17 -0.035294118 1 bed 1 bath 1
3 2016-03-17 -0.008278717 1 bed 1 bath 1
4 2016-03-17 -0.008350731 1 bed 1 bath 1
5 2016-03-17 0.004243281 1 bed 2 bath 1
6 2016-03-17 0.007299270 2 bed 2 bath 1
What is the best way to extract the information I like from my data frame?
Data
df <- structure(list(date = structure(c(16877, 16877, 16877, 16877, 16877, 16877), class = "Date"),
over = c(-0.002352941, -0.035294118, -0.008278717, -0.008350731, 0.004243281, 0.00729927),
bed.bath = c("1 bed 1 bath", "1 bed 1 bath", "1 bed 1 bath", "1 bed 1 bath", "1 bed 2 bath", "2 bed 2 bath")),
.Names = c("date", "over", "bed.bath"),
row.names = c("1", "2", "3", "4", "5", "6"), class = "data.frame")
library('dplyr')
df %>% mutate(beds = getbeds(bed.bath))
Upvotes: 2
Views: 64
Reputation: 4282
If you also want to extract the number of baths, you could use sapply:
getbeds <- function(x){
splits = strsplit(x," ")
as.integer( c(splits[[1]][[1]],splits[[1]][[3]]) )
}
bed.bath <- t(sapply(df$bed.bath,getbeds))
getbeds <- function(x){
splits = strsplit(x," ")
c(splits[[1]][[1]],splits[[1]][[3]])
}
bed.bath <- t(sapply(df$bed.bath,getbeds))
df$bed <- bed.bath[,1]
df$bath <- bed.bath[,2]
df
# date over bed.bath bed bath
#1 2016-03-17 -0.002352941 1 bed 1 bath 1 1
#2 2016-03-17 -0.035294118 1 bed 1 bath 1 1
#3 2016-03-17 -0.008278717 1 bed 1 bath 1 1
#4 2016-03-17 -0.008350731 1 bed 1 bath 1 1
#5 2016-03-17 0.004243281 1 bed 2 bath 1 2
Upvotes: 1
Reputation: 887241
We can use extract
from tidyr
library(tidyr)
library(dplyr)
df %>%
extract(bed.bath, into = 'beds', "(\\d+).*", remove = FALSE)
Or with base R
using sub
to match one or more spaces (\\s+
) followed by characters (.*
) and replace it with blanks so that we get the numbers at the start of the string and all other characters are removed.
df$beds <- with(df, as.integer(sub("\\s+.*", "", bed.bath)))
The reason for the same value in OP's output is because it is extracting only the first observation ([1]
) from the first list
element ([[1]]
)
Upvotes: 4