Reputation: 1372
I have the dataset with the following values:
var1 var2
1234 abc
2345 bcs
5678 csd
1234 abc
1234 bcs
5678 csd
1234 bcs
1234 xyz
1234 abc
9101 zzz
I need for every unique value in column var1 to count and show the top 3 frequency counts of the corresponding values in var2, and get the output, for example:
var1 var2 count
1234 abc 3
1234 bcs 2
1234 xyz 1
5678 csd 2
9101 zzz 1
What's the most efficient way of doing that?
Upvotes: 2
Views: 104
Reputation: 294218
You need to include nlargest
df.groupby('var1').var2.apply(lambda x: x.value_counts().nlargest(3)) \
.reset_index(name='count').rename(columns={'level_1': 'var2'})
var1 var2 count
0 1234 abc 3
1 1234 bcs 2
2 1234 xyz 1
3 2345 bcs 1
4 5678 csd 2
5 9101 zzz 1
Upvotes: 2
Reputation: 153460
df_a.groupby(['var1','var2'])['var2'].agg({'count':'count'}).reset_index()
Upvotes: 1