Reputation: 7255
In this pandas dataframe:
df =
pos index data
21 36 a,b,c
21 36 a,b,c
23 36 c,d,e
25 36 f,g,h
27 36 g,h,k
29 39 a,b,c
29 39 a,b,c
31 39 .
35 39 c,k
36 41 g,h
38 41 k,l
39 41 j,k
39 41 j,k
I want to remove the repeated line that are only in the same index group and when they are in the head regions of the subframe.
So, I did:
df_grouped = df.groupby(['index'], as_index=True)
now,
for i, sub_frame in df_grouped:
subframe.apply(lamda g: ... remove one duplicate line in the head region if pos value is a repeat)
I want to apply this method because some pos
value will be repeated in the tail region which should not be removed.
Any suggestions.
Expected output:
pos index data
removed
21 36 a,b,c
23 36 c,d,e
25 36 f,g,h
27 36 g,h,k
removed
29 39 a,b,c
31 39 .
35 39 c,k
36 41 g,h
38 41 k,l
39 41 j,k
39 41 j,k
Upvotes: 1
Views: 956
Reputation: 4855
If it doesn't have to be done in a single apply statement, then this code will only remove duplicates in the head region:
data= {'pos':[21, 21, 23, 25, 27, 29, 29, 31, 35, 36, 38, 39, 39],
'idx':[36, 36, 36, 36, 36, 39, 39, 39, 39, 41, 41, 41, 41],
'data':['a,b,c', 'a,b,c', 'c,d,e', 'f,g,h', 'g,h,k', 'a,b,c', 'a,b,c', '.', 'c,k', 'g,h', 'h,l', 'j,k', 'j,k']
}
df = pd.DataFrame(data)
accum = []
for i, sub_frame in df.groupby('idx'):
accum.append(pd.concat([sub_frame.iloc[:2].drop_duplicates(), sub_frame.iloc[2:]]))
df2 = pd.concat(accum)
print(df2)
EDIT2: The first version of the chained command that I posted was wrong and and only worked for the sample data. This version provides a more general solution to remove duplicate rows per the OP's request:
df.drop(df.groupby('idx') # group by the index column
.head(2) # select the first two rows
.duplicated() # create a Series with True for duplicate rows
.to_frame(name='duped') # make the Series a dataframe
.query('duped') # select only the duplicate rows
.index) # provide index of duplicated rows to drop
Upvotes: 1