Reputation: 41
I am new to tensorflow. I am using Tflearn to train my images to classify eye state. For initial period, right now, i have 400 training images and 200 validating images. I am using image_preloader to take custom image input in my script. I think it loads image successfully shows:
tflearn.data_utils.ImagePreloader object at 0x7fa28f3a5310
but it's causing problem while dividing and getting batches while training,
giving a Traceback error as
Traceback (most recent call last):
File "tflearn_custom.py", line 181, in <module>
model.fit(x,y,validation_set=({'input':test_x},{'targets':test_y}),n_epoch=10,batch_size=10)
File "/usr/local/lib/python2.7/dist-packages/tflearn/models/dnn.py", line 215, in fit
callbacks=callbacks)
File "/usr/local/lib/python2.7/dist-packages/tflearn/helpers/trainer.py", line 285, in fit
self.summ_writer, self.coord)
File "/usr/local/lib/python2.7/dist-packages/tflearn/helpers/trainer.py", line 709, in initialize_fit
self.n_train_samples = len(get_dict_first_element(feed_dict))
TypeError: object of type 'Tensor' has no len()
This is my code:
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout,fully_connected
from tflearn.layers.estimator import regression
import tensorflow as tf
from tflearn.data_utils import image_preloader
test_filename='/path_to_validating_set/'
train_filename='/path_to_training_set/'
x, y = image_preloader(train_filename, image_shape=(128, 128), mode='folder', grayscale=True, categorical_labels=True, normalize=True)
test_x, test_y = image_preloader(test_filename, image_shape=(128, 128), mode='folder', grayscale=True, categorical_labels=True, normalize=True)
convnet =input_data(shape=[None, 128,128,1], name='input')
convnet = conv_2d(convnet, 32, 2, activation='relu')
convnet = max_pool_2d(convnet,2)
convnet = conv_2d(convnet, 64, 2, activation='relu')
convnet = max_pool_2d(convnet,2)
convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=0.01, loss='categorical_crossentropy', name='targets')
model= tflearn.DNN(convnet)
model.fit(x,y,validation_set=({'input':test_x},{'targets':test_y}),n_epoch=5,batch_size=5)
I am using tensorflow 1.0. I already tried searching similar problems but nothing could resolved it.
Upvotes: 4
Views: 6799
Reputation: 51
I think the question is feed_dict
is a tensor, and object of type Tensor
has no length. You can use feed_dict.shape[0]
to get it's length.
Upvotes: 5