Reputation: 560
I need to do some calculations based on historical data in Spark, but my case is a little different than examples that float all over the Internet. I have a dataset with 3 columns: enter_date, exit_date, client_id. I need to calculate online client counts between hourly intervals.
For example consider following data:
enter_date | exit_date | client_id
2017-03-01 12:30:00 | 2017-03-01 13:30:00 | 1
2017-03-01 12:45:00 | 2017-03-01 14:10:00 | 2
2017-03-01 13:00:00 | 2017-03-01 15:20:00 | 3
I must get following as result:
time_interval | count
2017-03-01 12:00:00 | 2
2017-03-01 13:00:00 | 3
2017-03-01 14:00:00 | 2
2017-03-01 15:00:00 | 1
As you can see, calculation must be performed based on not only enter_date, but both enter_date and exit_date columns.
So, there are mainly 2 questions:
Upvotes: 2
Views: 339
Reputation: 638
you can also do it with the Spark SQL, but there you have to use another Dataset which contains the intervals. I used a separate CSV File, but in theory you can add it however you want.
Apache Spark in Java
Needed Files:
timeinterval.csv
time_interval
01.03.2017 11:00:00
01.03.2017 12:00:00
01.03.2017 13:00:00
01.03.2017 14:00:00
01.03.2017 15:00:00
01.03.2017 16:00:00
test.csv
enter_date | exit_date | client_id
2017-03-01 12:30:00 | 2017-03-01 13:30:00 | 1
2017-03-01 12:45:00 | 2017-03-01 14:10:00 | 2
2017-03-01 13:00:00 | 2017-03-01 15:20:00 | 3
I did this in Java, but since I use SQL the conversion should be pretty simple
Dataset<Row> rowsTest = spark.read()
.option("header", "true")
.option("delimiter", ";")
.option("quoteMode", "NONE")
.csv("C:/Temp/stackoverflow/test.csv");
Dataset<Row> rowsTimeInterval = spark.read()
.option("header", "true")
.option("delimiter", ";")
.option("quoteMode", "NONE")
.csv("C:/Temp/stackoverflow/timeinterval.csv");
rowsTest.createOrReplaceTempView("test");
rowsTimeInterval.createOrReplaceTempView("timeinterval");
String sql = "SELECT timeinterval.time_interval,(" +
"SELECT COUNT(test.client_id) FROM timeinterval AS sub" +
" INNER JOIN test ON " +
" ((unix_timestamp(sub.time_interval,\"dd.MM.yyyy HH:mm:SS\") + 60*60) > unix_timestamp(test.enter_date,\"dd.MM.yyyy HH:mm:SS\"))" +
" AND" +
" (sub.time_interval < test.exit_date)" +
" WHERE timeinterval.time_interval = sub.time_interval" +
") AS RowCount" +
" FROM timeinterval";
Dataset<Row> result = spark.sql(sql);
result.show();
here the raw SQL statement
SELECT timeinterval.time_interval,(
SELECT COUNT(test.client_id)
FROM timeinterval AS sub
INNER JOIN test ON
(unix_timestamp(sub.time_interval,"dd.MM.yyyy HH:mm:SS") + 60*60) > unix_timestamp(test.enter_date,"dd.MM.yyyy HH:mm:SS"))
AND
(sub.time_interval < test.exit_date)
WHERE
timeinterval.time_interval = sub.time_interval
) AS RowCount
FROM timeinterval
as I make use of the unix_timestamp function(see https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/sql/functions.html#unix_timestamp%28%29) you'll need a version equal to or higher than 1.5.0
| time_interval|RowCount|
+-------------------+--------+
|01.03.2017 11:00:00| 0|
|01.03.2017 12:00:00| 2|
|01.03.2017 13:00:00| 3|
|01.03.2017 14:00:00| 2|
|01.03.2017 15:00:00| 1|
|01.03.2017 16:00:00| 0|
+-------------------+--------+
Upvotes: 1
Reputation: 7207
On Scala can be implemented in this way, guess, Python is similar:
val clientList = List(
Client("2017-03-01 12:30:00", "2017-03-01 13:30:00", 1),
Client("2017-03-01 12:45:00", "2017-03-01 14:10:00", 2),
Client("2017-03-01 13:00:00", "2017-03-01 15:20:00", 3)
)
val clientDF = sparkContext.parallelize(clientList).toDF
val timeFunctions = new TimeFunctions()
val result = clientDF.flatMap(
// return list of times between "enter_date" and "exit_date"
row => timeFunctions.getDiapason(row.getAs[String]("enter_date"), row.getAs[String]("exit_date"))
).map(time => (time, 1)).reduceByKey(_ + _).sortByKey(ascending = true)
result.foreach(println(_))
Result is folowing:
(2017-03-01 12:00:00,2)
(2017-03-01 13:00:00,3)
(2017-03-01 14:00:00,2)
(2017-03-01 15:00:00,1)
TimeFunctions can be implemented like:
val formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss")
def getDiapason(from: String, to: String): Seq[String] = {
var fromDate = LocalDateTime.parse(from,formatter).withSecond(0).withMinute(0)
val result = ArrayBuffer(formatter.format(fromDate))
val toDate = LocalDateTime.parse(to, formatter).withSecond(0).withMinute(0)
while (toDate.compareTo(fromDate) > 0) {
fromDate = fromDate.plusHours(1)
result += formatter.format(fromDate)
}
result
}
Upvotes: 2