Reputation: 12157
I have a pandas dataframe with dates and maximum and minimum values called solflux
:
date max min
0 2015-01-01 148 10.5
1 2015-02-01 142 9.5
2 2015-03-01 140 9.0
3 2015-04-01 135 7.5
4 2015-05-01 132 7.5
...
I want to plot these values as errorbars in matplotlib. I use the following to find the values I want
dates = solflux['date']
deltas = (solflux['max'] - solflux['min'])/2
means = solflux['min'] + deltas
and then plot with
import matplotlib.pyplot as plt
f = plt.figure()
ax = f.add_subplot(111)
ax.errorbar(dates, means, marker='+', yerr=deltas)
I then get this error:
C:\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py:545: UserWarning: No labelled objects found. Use label='...' kwarg on individu
al plots.
warnings.warn("No labelled objects found. "
Traceback (most recent call last):
File "C:\Anaconda3\lib\site-packages\matplotlib\backends\backend_qt5agg.py", line 197, in __draw_idle_agg
FigureCanvasAgg.draw(self)
File "C:\Anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py", line 464, in draw
self.figure.draw(self.renderer)
File "C:\Anaconda3\lib\site-packages\matplotlib\artist.py", line 63, in draw_wrapper
draw(artist, renderer, *args, **kwargs)
File "C:\Anaconda3\lib\site-packages\matplotlib\figure.py", line 1143, in draw
renderer, self, dsu, self.suppressComposite)
File "C:\Anaconda3\lib\site-packages\matplotlib\image.py", line 139, in _draw_list_compositing_images
a.draw(renderer)
File "C:\Anaconda3\lib\site-packages\matplotlib\artist.py", line 63, in draw_wrapper
draw(artist, renderer, *args, **kwargs)
File "C:\Anaconda3\lib\site-packages\matplotlib\axes\_base.py", line 2409, in draw
mimage._draw_list_compositing_images(renderer, self, dsu)
File "C:\Anaconda3\lib\site-packages\matplotlib\image.py", line 139, in _draw_list_compositing_images
a.draw(renderer)
File "C:\Anaconda3\lib\site-packages\matplotlib\artist.py", line 63, in draw_wrapper
draw(artist, renderer, *args, **kwargs)
File "C:\Anaconda3\lib\site-packages\matplotlib\axis.py", line 1136, in draw
ticks_to_draw = self._update_ticks(renderer)
File "C:\Anaconda3\lib\site-packages\matplotlib\axis.py", line 969, in _update_ticks
tick_tups = [t for t in self.iter_ticks()]
File "C:\Anaconda3\lib\site-packages\matplotlib\axis.py", line 969, in <listcomp>
tick_tups = [t for t in self.iter_ticks()]
File "C:\Anaconda3\lib\site-packages\matplotlib\axis.py", line 912, in iter_ticks
majorLocs = self.major.locator()
File "C:\Anaconda3\lib\site-packages\matplotlib\dates.py", line 983, in __call__
self.refresh()
File "C:\Anaconda3\lib\site-packages\matplotlib\dates.py", line 1003, in refresh
dmin, dmax = self.viewlim_to_dt()
File "C:\Anaconda3\lib\site-packages\matplotlib\dates.py", line 760, in viewlim_to_dt
return num2date(vmin, self.tz), num2date(vmax, self.tz)
File "C:\Anaconda3\lib\site-packages\matplotlib\dates.py", line 401, in num2date
return _from_ordinalf(x, tz)
File "C:\Anaconda3\lib\site-packages\matplotlib\dates.py", line 254, in _from_ordinalf
dt = datetime.datetime.fromordinal(ix).replace(tzinfo=UTC)
OverflowError: Python int too large to convert to C long
The strange thing is that if I ignore the yerr part and just run
ax.plot(dates, means, marker='+')
everything works as expected. I suspect this is a bug in matplotlib, but was wondering if anyone had any suggestions?
I'm running Python 3.6.0, Matplotlib 2.0.0 and Pandas 0.19.2 which is all up to date as far as I am aware.
Upvotes: 1
Views: 3591
Reputation: 21274
I also got an error when I tried to run your example code, but it wasn't the same one you posted. The error I see is:
ValueError: invalid literal for float(): 2015-01-01
The error trace you posted also seems to be concerned with date conversions, though, so we may be dealing with basically the same problem - are you dates stored as date objects? I'm able to run your example code successfully after explicitly converting dates
to a Datetime
object, using to_datetime()
:
date max min
0 2015-01-01 148 10.5
1 2015-02-01 142 9.5
2 2015-03-01 140 9.0
3 2015-04-01 135 7.5
4 2015-05-01 132 7.5
solflux = pd.read_clipboard()
dates = pd.to_datetime(solflux['date'])
deltas = (solflux['max'] - solflux['min'])/2
means = solflux['min'] + deltas
f = plt.figure()
ax = f.add_subplot(111)
ax.errorbar(dates, means, marker='+', yerr=deltas)
Note, however, that you can achieve the same result using native Pandas functionality, and the tick labels end up a bit neater this way:
solflux.date = pd.to_datetime(solflux.date)
solflux['deltas'] = (solflux['max'] - solflux['min'])/2
solflux['means'] = solflux['min'] + solflux.deltas
Data frame:
date max min deltas means
0 2015-01-01 148 10.5 68.75 79.25
1 2015-02-01 142 9.5 66.25 75.75
2 2015-03-01 140 9.0 65.50 74.50
3 2015-04-01 135 7.5 63.75 71.25
4 2015-05-01 132 7.5 62.25 69.75
Now use plot()
(optionally set date
as index, you can also just set x='date'
inside plot()
):
solflux.set_index('date').plot(y='means', yerr='deltas', legend=False)
Upvotes: 3