Reputation: 145
I'm trying to understand how can I address columns after using get_dummies
.
For example, let's say I have three categorical variables.
first variable has 2 levels.
second variable has 5 levels.
third variable has 2 levels.
df=pd.DataFrame({"a":["Yes","Yes","No","No","No","Yes","Yes"], "b":["a","b","c","d","e","a","c"],"c":["1","2","2","1","2","1","1"]})
I created dummies for all three variable in order to use them in sklearn
regression in python.
df1 = pd.get_dummies(df,drop_first=True)
Now I want to create two interactions (multiplication): bc , ba
how can I create the multiplication between each dummies variable to another one without using their specific names like that:
df1['a_yes_b'] = df1['a_Yes']*df1['b_b']
df1['a_yes_c'] = df1['a_Yes']*df1['b_c']
df1['a_yes_d'] = df1['a_Yes']*df1['b_d']
df1['a_yes_e'] = df1['a_Yes']*df1['b_e']
df1['c_2_b'] = df1['c_2']*df1['b_b']
df1['c_2_c'] = df1['c_2']*df1['b_c']
df1['c_2_d'] = df1['c_2']*df1['b_d']
df1['c_2_e'] = df1['c_2']*df1['b_e']
Thanks.
Upvotes: 3
Views: 5047
Reputation: 11
This solves your problem:
def get_design_with_pair_interaction(data, group_pair):
""" Get the design matrix with the pairwise interactions
Parameters
----------
data (pandas.DataFrame):
Pandas data frame with the two variables to build the design matrix of their two main effects and their interaction
group_pair (iterator):
List with the name of the two variables (name of the columns) to build the design matrix of their two main effects and their interaction
Returns
-------
x_new (pandas.DataFrame):
Pandas data frame with the design matrix of their two main effects and their interaction
"""
x = pd.get_dummies(data[group_pair])
interactions_lst = list(
itertools.combinations(
x.columns.tolist(),
2,
),
)
x_new = x.copy()
for level_1, level_2 in interactions_lst:
if level_1.split('_')[0] == level_2.split('_')[0]:
continue
x_new = pd.concat(
[
x_new,
x[level_1] * x[level_2]
],
axis=1,
)
x_new = x_new.rename(
columns = {
0: (level_1 + '_' + level_2)
}
)
return x_new
Upvotes: 0
Reputation: 862451
You can use loops for creating new columns, for filtering column names is possible use filtering by boolean indexing
and str.startswith
:
a = df1.columns[df1.columns.str.startswith('a')]
b = df1.columns[df1.columns.str.startswith('b')]
c = df1.columns[df1.columns.str.startswith('c')]
for col1 in b:
for col2 in a:
df1[col2 + '_' + col1.split('_')[1]] = df1[col1].mul(df1[col2])
for col1 in b:
for col2 in c:
df1[col2 + '_' + col1.split('_')[1]] = df1[col1].mul(df1[col2])
print (df1)
a_Yes b_b b_c b_d b_e c_2 a_Yes_b a_Yes_c a_Yes_d a_Yes_e c_2_b \
0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 0 0 0 1
2 0 0 1 0 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 1 1 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0
6 1 0 1 0 0 0 0 1 0 0 0
c_2_c c_2_d c_2_e
0 0 0 0
1 0 0 0
2 1 0 0
3 0 0 0
4 0 0 1
5 0 0 0
6 0 0 0
But if a
and b
have only one columns (in sample yes, in real data maybe) use: filter
, mul
, squeeze
and concat
:
a = df1.filter(regex='^a')
b = df1.filter(regex='^b')
c = df1.filter(regex='^c')
dfa = b.mul(a.squeeze(), axis=0).rename(columns=lambda x: a.columns[0] + x[1:])
dfc = b.mul(c.squeeze(), axis=0).rename(columns=lambda x: c.columns[0] + x[1:])
df1 = pd.concat([df1, dfa, dfc], axis=1)
print (df1)
a_Yes b_b b_c b_d b_e c_2 a_Yes_b a_Yes_c a_Yes_d a_Yes_e c_2_b \
0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 0 0 0 1
2 0 0 1 0 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 1 1 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0
6 1 0 1 0 0 0 0 1 0 0 0
c_2_c c_2_d c_2_e
0 0 0 0
1 0 0 0
2 1 0 0
3 0 0 0
4 0 0 1
5 0 0 0
6 0 0 0
Upvotes: 3
Reputation: 182
You can convert dataframe column into numpy array and then multiply it accordingly. here's the link where you can find methos to do that:
Convert Select Columns in Pandas Dataframe to Numpy Array
Upvotes: 0