Reputation: 529
I'm fairly used to adding in missing cases for data but this use case escapes me.
I have a number of dataframes (which differ slightly), an example would be:
> t1
3 4 5
2 1 0 0
3 0 2 2
4 2 6 4
5 1 2 1
structure(list(`3` = c(1L, 0L, 2L, 1L), `4` = c(0L, 2L, 6L, 2L
), `5` = c(0L, 2L, 4L, 1L)), .Names = c("3", "4", "5"), row.names = c("2",
"3", "4", "5"), class = "data.frame")
Row names & Column names should be from 1:5 and, obviously, where these were missing the cell value set to NA. For the example above this would give:
> t1
1 2 3 4 5
1 NA NA NA NA NA
2 NA NA 1 0 0
3 NA NA 0 2 2
4 NA NA 2 6 4
5 NA NA 1 2 1
In each case ANY one or more rows AND/OR columns might be missing.
I can readily get the missing columns using the method described by Josh O'Brien here but am missing the row method.
Can anyone help?
Upvotes: 4
Views: 1469
Reputation: 1931
Based on the solution you mentioned by Josh O'Brien, you can do the same but use rownames
instead of names
. Take a look at the code below..
df <- data.frame(a=1:4, e=4:1)
colnms <- c("a", "b", "d", "e")
rownms <- c("1", "2", "3", "4", "5")
rownames(df) <- c("1", "3", "4", "5")
## find missing columns and replace with zero, and order them
Missing <- setdiff(colnms, names(df))
df[Missing] <- 0
df <- df[colnms]
df
## do the same for rows
MissingR <- setdiff(rownms, rownames(df))
df[MissingR,] <- 0
df <- df[rownms,]
df
# > df
# a b d e
#1 1 0 0 4
#2 0 0 0 0
#3 2 0 0 3
#4 3 0 0 2
#5 4 0 0 1
Upvotes: 0
Reputation: 886938
We can do this in a much easier way with base R
by creating a matrix
of NAs of the required dimensions and then assign the values of 't1' based on the row names and column names of 't1'
m1 <- matrix(NA, ncol=5, nrow=5, dimnames = list(1:5, 1:5))
m1[row.names(t1), colnames(t1)] <- unlist(t1)
m1
# 1 2 3 4 5
#1 NA NA NA NA NA
#2 NA NA 1 0 0
#3 NA NA 0 2 2
#4 NA NA 2 6 4
#5 NA NA 1 2 1
Or using tidyverse
library(tidyverse)
rownames_to_column(t1, "rn") %>%
gather(Var, Val, -rn) %>%
mutate_at(vars(rn, Var), as.integer) %>%
complete(rn = seq_len(max(rn)), Var = seq_len(max(Var))) %>%
spread(Var, Val)
# A tibble: 5 × 6
# rn `1` `2` `3` `4` `5`
#* <int> <int> <int> <int> <int> <int>
#1 1 NA NA NA NA NA
#2 2 NA NA 1 0 0
#3 3 NA NA 0 2 2
#4 4 NA NA 2 6 4
#5 5 NA NA 1 2 1
Upvotes: 2