Reputation: 779
I built sentiment analyzer using SVM classifier. I trained model with probability=True and it can give me probability. But when I pickled my model and load it again later, the probability doesn't work anymore.
The model:
from sklearn.svm import SVC, LinearSVC
pipeline_svm = Pipeline([
('bow', CountVectorizer()),
('tfidf', TfidfTransformer()),
('classifier', SVC(probability=True)),])
# pipeline parameters to automatically explore and tune
param_svm = [
{'classifier__C': [1, 10, 100, 1000], 'classifier__kernel': ['linear']},
{'classifier__C': [1, 10, 100, 1000], 'classifier__gamma': [0.001, 0.0001], 'classifier__kernel': ['rbf']},
]
grid_svm = GridSearchCV(
pipeline_svm,
param_grid=param_svm,
refit=True,
n_jobs=-1,
scoring='accuracy',
cv=StratifiedKFold(label_train, n_folds=5),)
svm_detector_reloaded = cPickle.load(open('svm_sentiment_analyzer.pkl', 'rb'))
print(svm_detector_reloaded.predict([""""Today is awesome day"""])[0])
Gives me:
AttributeError: predict_proba is not available when probability=False
Upvotes: 26
Views: 42471
Reputation: 147
Adding (probability=True) while initializing the classifier as someone above suggested, resolved my error:
clf = SVC(kernel='rbf', C=1e9, gamma=1e-07, probability=True).fit(xtrain,ytrain)
Upvotes: 8
Reputation: 1638
Use the predprobs function to calculate the scores or probabilities/scores as asked in the auc(y_true, y_score), the issue is because of y_score. you can convert it as shown in the following line of code
# Classifier - Algorithm - SVM
# fit the training dataset on the classifier
SVM = svm.SVC(C=1.0, kernel='linear', degree=3, gamma='auto',probability=True)
SVM.fit(Train_X_Tfidf,Train_Y)
# predict the labels on validation dataset
predictions_SVM = SVM.predict(Test_X_Tfidf)
# Use accuracy_score function to get the accuracy
**print("SVM Accuracy Score -> ",accuracy_score(predictions_SVM, Test_Y))**
probs = SVM.**predict_proba**(Test_X_Tfidf)
preds = probs[:,1]
fpr, tpr, threshold = **roc_curve(Test_Y, preds)**
**print("SVM Area under curve -> ",auc(fpr, tpr))**
see the difference between the accuracy_score and the auc(), you need the scores of predictions.
Upvotes: 1
Reputation: 301
Use: SVM(probability=True)
or
grid_svm = GridSearchCV(
probability=True
pipeline_svm,
param_grid=param_svm,
refit=True,
n_jobs=-1,
scoring='accuracy',
cv=StratifiedKFold(label_train, n_folds=5),)
Upvotes: 20
Reputation: 898
You can use CallibratedClassifierCV for probability score output.
from sklearn.calibration import CalibratedClassifierCV
model_svc = LinearSVC()
model = CalibratedClassifierCV(model_svc)
model.fit(X_train, y_train)
Save model using pickle.
import pickle
filename = 'linearSVC.sav'
pickle.dump(model, open(filename, 'wb'))
Load model using pickle.load.
model = pickle.load(open(filename, 'rb'))
Now start prediction.
pred_class = model.predict(pred)
probability = model.predict_proba(pred)
Upvotes: 2
Reputation: 5914
If that can help, pickling the model with with:
import pickle
pickle.dump(grid_svm, open('svm_sentiment_analyzer.pkl', 'wb'))
and loading the model and predicting with
svm_detector_reloaded = pickle.load(open('svm_sentiment_analyzer.pkl', 'rb'))
print(svm_detector_reloaded.predict_proba(["Today is an awesome day"])[0])
returned me two probabilities fine, after working on your code to rerun it and training the model on a pandas sents
DataFrame with
grid_svm.fit(sents.Sentence.values, sents.Positive.values)
Best practices (e.g. using joblib
) on model serialization can be found at https://scikit-learn.org/stable/modules/model_persistence.html
Upvotes: 1