Reputation: 241
Say I have the following dataset:
PlotName<- c(A,B,B,C,D,E,F,F,F)
NewValue<- c(1,2,1,3,0,0,2,1,3)
OldValue<- c(3,3,1,2,1,3,0,3,1)
I want to sum NewValue
and OldValue
values for the elements repeating in PlotName
eliminating at the same tipe repeated elements (letters). For example, for 'B' NewValue=2+1=3 and OldValue=3+1=4
Namely:
PlotName<- c(A,B,C,D,E,F)
NewValue<- c(1,3,3,0,0,6)
OldValue<- c(3,4,2,1,3,4)
I could filter rows with repetead values in PlotName
(e.g. with dplyr) and then sum the values individually but I am looking for a faster method to operate on a large datasets with many repeated values.
Upvotes: 2
Views: 1440
Reputation: 13680
With dplyr
:
library(dplyr)
data.frame(PlotName, NewValue, OldValue) %>%
group_by(PlotName) %>%
summarise_all(sum)
# # A tibble: 6 × 3
# PlotName NewValue OldValue
# <fctr> <dbl> <dbl>
# 1 A 1 3
# 2 B 3 4
# 3 C 3 2
# 4 D 0 1
# 5 E 0 3
# 6 F 6 4
Upvotes: 2
Reputation: 887651
We can do this with any one of the group by operations after creating a data.frame
aggregate(.~PlotName, data.frame(NewValue, OldValue, PlotName), FUN = sum)
Or another option is rowsum
rowsum(cbind(NewValue, OldValue), PlotName)
# NewValue OldValue
#A 1 3
#B 3 4
#C 3 2
#D 0 1
#E 0 3
#F 6 4
A faster option is to convert to data.table
and use the data.table
methods
library(data.table)
data.table(NewValue, OldValue, PlotName)[, lapply(.SD, sum), PlotName]
Upvotes: 2
Reputation: 32548
sapply(split(OldValue, PlotName), sum)
#A B C D E F
#3 4 2 1 3 4
sapply(split(NewValue, PlotName), sum)
#A B C D E F
#1 3 3 0 0 6
Upvotes: 1