Reputation: 2232
When encoding to Json with circe we really want the type
field to show e.g.
scala> val fooJson = foo.asJson
fooJson: io.circe.Json =
{
"this_is_a_string" : "abc",
"another_field" : 123,
"type" : "Foo"
}
This is taken from the release notes which previously mentions that you can configure the encoding like this:
implicit val customConfig: Configuration =
Configuration.default.withSnakeCaseKeys.withDefaults.withDiscriminator("type")
Also other information about circe here suggests that without any configuration you should get some class type information in the encoding json.
Am I missing something? How do you get the class type to show?
Upvotes: 2
Views: 2805
Reputation: 3988
UPDATE 30/03/2017: Follow up to OP's comment
I was able to make this work, as shown in the linked release notes.
Preparation step 1: add additional dependency to build.sbt
libraryDependencies += "io.circe" %% "circe-generic-extras" % "0.7.0"
Preparation step 2: setup dummy sealed trait hierarchy
import io.circe.{ Decoder, Encoder }
import io.circe.parser._, io.circe.syntax._
import io.circe.generic.extras.Configuration
import io.circe.generic.extras.auto._
import io.circe.generic.{ semiauto => boring } // <- This is the default generic derivation behaviour
import io.circe.generic.extras.{ semiauto => fancy } // <- This is the new generic derivation behaviour
implicit val customConfig: Configuration = Configuration.default.withDefaults.withDiscriminator("type")
sealed trait Stuff
case class Foo(thisIsAString: String, anotherField: Int = 13) extends Stuff
case class Bar(thisIsAString: String, anotherField: Int = 13) extends Stuff
object Foo {
implicit val decodeBar: Decoder[Bar] = fancy.deriveDecoder
implicit val encodeBar: Encoder[Bar] = fancy.deriveEncoder
}
object Bar {
implicit val decodeBar: Decoder[Bar] = boring.deriveDecoder
implicit val encodeBar: Encoder[Bar] = boring.deriveEncoder
}
Actual code using this:
val foo: Stuff = Foo("abc", 123)
val bar: Stuff = Bar("xyz", 987)
val fooString = foo.asJson.noSpaces
// fooString: String = {"thisIsAString":"abc","anotherField":123,"type":"Foo"}
val barString = bar.asJson.noSpaces
// barString: String = {"thisIsAString":"xyz","anotherField":987,"type":"Bar"}
val bar2 = for{
json <- parse(barString)
bar2 <- json.as[Stuff]
} yield bar2
// bar2: scala.util.Either[io.circe.Error,Stuff] = Right(Bar(xyz,987))
val foo2 = for{
json <- parse(fooString)
foo2 <- json.as[Stuff]
} yield foo2
// foo2: scala.util.Either[io.circe.Error,Stuff] = Right(Foo(abc,123))
So, provided you import the extra dependency (which is where Configuration
comes from), it looks like it works.
Finally, as a sidenote, it does seem that there is some disconnection between Circe's DESIGN.md and practice, for which I am actually happy.
Original answer: I am not sure this is supposed to be supported, by design.
Taken from Circe's DESIGN.md:
Implicit scope should not be used for configuration. Lots of people have asked for a way to configure generic codec derivation to use e.g. a type field as the discriminator for sealed trait hierarchies, or to use snake case for member names. argonaut-shapeless supports this quite straightforwardly with a JsonCoproductCodec type that the user can provide implicitly.
I don't want to criticize this approach—it's entirely idiomatic Scala, and it often works well in practice—but I personally don't like using implicit values for configuration, and I'd like to avoid it in circe until I am 100% convinced that there's no alternative way to provide this functionality.
What this means concretely: You'll probably never see an implicit argument that isn't a type class instance—i.e. that isn't a type constructor applied to a type in your model—in circe, and configuration of generic codec derivation is going to be relatively limited (compared to e.g. argonaut-shapeless) until we find a nice way to do this kind of thing with type tags or something similar.
In particular, customConfig: Configuration
seems to be exactly the type of argument that the last paragraph refers to (e.g. an implicit argument that isn't a type class instance)
I am sure that @travis-brown or any other Circe's main contributors could shed some more light on this, in case there was in fact a way of doing this - and I would be very happy to know it! :)
Upvotes: 8