Reputation: 8906
I have a feature matrix and a corresponding targets, which are ones or zeroes:
# raw observations
features = np.array([[1, 1, 0],
[1, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 0, 1]])
targets = np.array([1, 0, 1, 1, 0, 0])
As you can see, each feature may correspond to both ones and zeros. I need to convert my raw observation matrix to probability matrix, where each feature will correspond to the probability of seeing one as a target:
[1 1 0] -> 0.5
[0 1 0] -> 0.67
[0 0 1] -> 0
I have constructed a quite straight-forward solution:
import numpy as np
# raw observations
features = np.array([[1, 1, 0],
[1, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 0, 1]])
targets = np.array([1, 0, 1, 1, 0, 0])
from collections import Counter
def convert_obs_to_proba(features, targets):
features_ = []
targets_ = []
# compute unique rows (idx will point to some representative)
b = np.ascontiguousarray(features).view(np.dtype((np.void, features.dtype.itemsize * features.shape[1])))
_, idx = np.unique(b, return_index=True)
idx = idx[::-1]
zeros = Counter()
ones = Counter()
# collect row-wise number of one and zero targets
for i, row in enumerate(features[:]):
if targets[i] == 0:
zeros[tuple(row)] += 1
else:
ones[tuple(row)] += 1
# iterate over unique features and compute probabilities
for k in idx:
unique_row = features[k]
zero_count = zeros[tuple(unique_row)]
one_count = ones[tuple(unique_row)]
proba = float(one_count) / float(zero_count + one_count)
features_.append(unique_row)
targets_.append(proba)
return np.array(features_), np.array(targets_)
features_, targets_ = convert_obs_to_proba(features, targets)
print(features_)
print(targets_)
which:
Could it be solved in a prettier way using some advanced numpy magic?
Update. Previous code was pretty inefficient O(n^2). Converted it to more performance-friendly. Old code:
import numpy as np
# raw observations
features = np.array([[1, 1, 0],
[1, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 0, 1]])
targets = np.array([1, 0, 1, 1, 0, 0])
def convert_obs_to_proba(features, targets):
features_ = []
targets_ = []
# compute unique rows (idx will point to some representative)
b = np.ascontiguousarray(features).view(np.dtype((np.void, features.dtype.itemsize * features.shape[1])))
_, idx = np.unique(b, return_index=True)
idx = idx[::-1]
# calculate ZERO class occurences and ONE class occurences
for k in idx:
unique_row = features[k]
zeros = 0
ones = 0
for i, row in enumerate(features[:]):
if np.array_equal(row, unique_row):
if targets[i] == 0:
zeros += 1
else:
ones += 1
proba = float(ones) / float(zeros + ones)
features_.append(unique_row)
targets_.append(proba)
return np.array(features_), np.array(targets_)
features_, targets_ = convert_obs_to_proba(features, targets)
print(features_)
print(targets_)
Upvotes: 6
Views: 2613
Reputation: 414
np.sum(np.reshape([targets[f] if tuple(features[f])==tuple(i) else 0 for i in np.vstack(set(map(tuple,features))) for f in range(features.shape[0])],features.shape[::-1]),axis=1)/np.sum(np.reshape([1 if tuple(features[f])==tuple(i) else 0 for i in np.vstack(set(map(tuple,features))) for f in range(features.shape[0])],features.shape[::-1]),axis=1)
Here you go, numpy magic! Although unnecceserily so, this could probably be cleaned up using some boring variables ;) (And this is probably far from optimal)
Upvotes: 0
Reputation: 249123
It's easy using Pandas:
df = pd.DataFrame(features)
df['targets'] = targets
Now you have:
0 1 2 targets
0 1 1 0 1
1 1 1 0 0
2 0 1 0 1
3 0 1 0 1
4 0 1 0 0
5 0 0 1 0
Now, the fancy part:
df.groupby([0,1,2]).targets.mean()
Gives you:
0 1 2
0 0 1 0.000000
1 0 0.666667
1 1 0 0.500000
Name: targets, dtype: float64
Pandas doesn't print the 0 at the leftmost part of the 0.666 row, but if you inspect the value there, it is indeed 0.
Upvotes: 5