Reputation: 1297
Suppose i have a DataFrame:
df = pd.DataFrame({'CATEGORY':['a','b','c','b','b','a','b'],
'VALUE':[pd.np.NaN,1,0,0,5,0,4]})
which looks like
CATEGORY VALUE
0 a NaN
1 b 1
2 c 0
3 b 0
4 b 5
5 a 0
6 b 4
I group it:
df = df.groupby(by='CATEGORY')
And now, let me show, what i want with the help of example on one group 'b':
df.get_group('b')
group b:
CATEGORY VALUE
1 b 1
3 b 0
4 b 5
6 b 4
I need: In the scope of each group, count diff() between VALUE
values, skipping all NaN
s and 0
s. So the result should be:
CATEGORY VALUE DIFF
1 b 1 -
3 b 0 -
4 b 5 4
6 b 4 -1
Upvotes: 6
Views: 3232
Reputation: 6663
You can use diff
to subtract values after dropping 0
and NaN
values:
df = pd.DataFrame({'CATEGORY':['a','b','c','b','b','a','b'],
'VALUE':[pd.np.NaN,1,0,0,5,0,4]})
grouped = df.groupby("CATEGORY")
# define diff func
diff = lambda x: x["VALUE"].replace(0, np.NaN).dropna().diff()
df["DIFF"] = grouped.apply(diff).reset_index(0, drop=True)
print(df)
CATEGORY VALUE DIFF
0 a NaN NaN
1 b 1.0 NaN
2 c 0.0 NaN
3 b 0.0 NaN
4 b 5.0 4.0
5 a 0.0 NaN
6 b 4.0 -1.0
Upvotes: 4
Reputation: 32224
Sounds like a job for a pd.Series.shift()
operation along with a notnull
mask.
First we remove the unwanted values, before we group the data
nonull_df = df[(df['VALUE'] != 0) & df['VALUE'].notnull()]
groups = nonull_df.groupby(by='CATEGORY')
Now we can shift internally in the groups and calculate the diff
nonull_df['next_value'] = groups['VALUE'].shift(1)
nonull_df['diff'] = nonull_df['VALUE'] - nonull_df['next_value']
Lastly and optionally you can copy the data back to the original dataframe
df.loc[nonull_df.index] = nonull_df
df
CATEGORY VALUE next_value diff
0 a NaN NaN NaN
1 b 1.0 NaN NaN
2 c 0.0 NaN NaN
3 b 0.0 1.0 -1.0
4 b 5.0 1.0 4.0
5 a 0.0 NaN NaN
6 b 4.0 5.0 -1.0
Upvotes: 2