Richard B
Richard B

Reputation: 935

pandas DataFrame error "tuple index out of range"

I have a problem backward filling a numpy date vector using the current version of pandas. The same code works with an earlier version. The following demonstrates my problem:

The older version (0.7.3) works

C:\WINDOWS\system32>pip show pandas
Name: pandas
Version: 0.7.3
Summary: Powerful data structures for data analysis and statistics
Home-page: http://pandas.pydata.org
Author: The PyData Development Team
Author-email: [email protected]
License: BSD
Location: c:\program files\python\python27\lib\site-packages
Requires: python-dateutil, numpy

C:\WINDOWS\system32>python
Python 2.7.12 (v2.7.12:d33e0cf91556, Jun 27 2016, 15:24:40) [MSC v.1500 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> d=np.array([None, None, None, None, dt.now(), None])
>>> b = DataFrame(d)
>>> b.fillna(method='backfill')
                            0
0  2017-04-02 12:21:18.175000
1  2017-04-02 12:21:18.175000
2  2017-04-02 12:21:18.175000
3  2017-04-02 12:21:18.175000
4  2017-04-02 12:21:18.175000
5                        None
>>>

The current vesion (0.19.2) doesn't work:

C:\WINDOWS\system32>pip show pandas
Name: pandas
Version: 0.19.2
Summary: Powerful data structures for data analysis, time series,and statistics
Home-page: http://pandas.pydata.org
Author: The PyData Development Team
Author-email: [email protected]
License: BSD
Location: c:\program files\python\python27\lib\site-packages
Requires: pytz, python-dateutil, numpy


C:\WINDOWS\system32>python
Python 2.7.12 (v2.7.12:d33e0cf91556, Jun 27 2016, 15:24:40) [MSC v.1500 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from datetime import datetime as dt
>>> import numpy as np
>>> from pandas import DataFrame
>>> d=np.array([None, None, None, None, dt.now(), None])
>>> b = DataFrame(d)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Program Files\Python\Python27\lib\site-packages\pandas\core\frame.py", line 297, in __init__
    copy=copy)
  File "C:\Program Files\Python\Python27\lib\site-packages\pandas\core\frame.py", line 474, in _init_ndarray
    return create_block_manager_from_blocks([values], [columns, index])
  File "C:\Program Files\Python\Python27\lib\site-packages\pandas\core\internals.py", line 4256, in create_block_manager_from_blocks
    construction_error(tot_items, blocks[0].shape[1:], axes, e)
  File "C:\Program Files\Python\Python27\lib\site-packages\pandas\core\internals.py", line 4230, in construction_error
    if block_shape[0] == 0:
IndexError: tuple index out of range
>>>

Am I doing something wrong or is it, as I think, a bug in pandas? If its a bug how do I report that?

EDIT: This was filed as a bug report with Pandas and will be fixed in the next minor relase (0.19.3)

Upvotes: 2

Views: 2823

Answers (2)

MaxU - stand with Ukraine
MaxU - stand with Ukraine

Reputation: 210852

Try to specify (or cast) the dtype explicitly:

In [18]: d=np.array([None, None, None, None, pd.datetime.now(), None])

In [19]: b = DataFrame(d.astype('datetime64[ms]'))

In [20]: b
Out[20]:
                        0
0                     NaT
1                     NaT
2                     NaT
3                     NaT
4 2017-04-02 20:34:20.381
5                     NaT

In [21]: b.bfill()
Out[21]:
                        0
0 2017-04-02 20:34:20.381
1 2017-04-02 20:34:20.381
2 2017-04-02 20:34:20.381
3 2017-04-02 20:34:20.381
4 2017-04-02 20:34:20.381
5                     NaT

Upvotes: 0

John Zwinck
John Zwinck

Reputation: 249293

DataFrame(d) fails, and I'm not sure why, but Series(d) works, so you can do this:

pd.DataFrame({0:d})

That is, explicitly tell Pandas that d is a Series called 0, which is what it was implicitly doing in the ancient 0.7 version.

If you do want to report a bug, you can simply say that this works:

pd.DataFrame([None, None, datetime.datetime.now()])

But this fails:

pd.DataFrame([None, None, None, datetime.datetime.now()])

Upvotes: 2

Related Questions