Reputation: 9803
library(ggplot2)
iris$Sepal.Length2 <- ifelse(iris$Sepal.Length < 5, 1, 0)
iris$Sepal.Width2 <- ifelse(iris$Sepal.Width < 3, 1, 0)
SmallLength <- data.frame(Petal.Length = iris$Petal.Length[iris$Sepal.Length2 == 1],
status = "Small Length")
LargeLength <- data.frame(Petal.Length = iris$Petal.Length[iris$Sepal.Length2 == 0],
status = "Large Length")
SmallWidth <- data.frame(Petal.Length = iris$Petal.Length[iris$Sepal.Width2 == 1],
status = "Small Width")
LargeWidth <- data.frame(Petal.Length = iris$Petal.Length[iris$Sepal.Width2 == 0],
status = "Large Width")
Length <- rbind(SmallLength, LargeLength)
Width <- rbind(SmallWidth, LargeWidth)
ggplot(Length, aes(Petal.Length, fill = status)) + geom_density(alpha = 0.2) + labs(x = "Petal Length")
I have a continuous variable, Petal.Length
, and I would like to stratify it by Sepal.Length
, and Sepal.Width
, both of which I have coded as binary variables. In the above plot, I stratified Petal.Length
by Sepal.Length
only. How can I further stratify it by Sepal.Width
? The resulting plot should perhaps have 4 colors I think...1 for Petal.Length
that have small length and small width, 1 for small length and large width, 1 for large length and small width, and 1 for large length and large width.
Upvotes: 2
Views: 1476
Reputation: 2050
Here is an example using pipes - using your data as is you would need to rbind the length and weight data.frames.
library(tidyverse)
iris %>%
mutate(statusl = factor(ifelse(Sepal.Length<5,'Small length', 'Large length')),
statusw = factor(ifelse(Sepal.Width<3,'Small width', 'Large width'))) %>%
ggplot(aes(Petal.Length, fill=interaction(statusl, statusw))) +
geom_density(alpha = 0.2) + xlab("Petal Length")
Upvotes: 2
Reputation: 60160
There's no need to create separate dataframes for this, you can achieve everything you need using the full iris
dataset:
iris$length_binary <- ifelse(iris$Sepal.Length < 5, "Small", "Large")
iris$width_binary <- ifelse(iris$Sepal.Width < 3, "Small", "Large")
iris$length_width = interaction(iris$length_binary, iris$width_binary, sep=", ")
ggplot(iris, aes(Petal.Length, fill = length_width)) +
geom_density(alpha = 0.2) +
labs(x = "Petal Length",
fill = "Length, Width")
Result:
Upvotes: 3
Reputation: 118
One way to accomplish this is by placing the variable that you would like to stratify the graph upon inside the geom_density layer as such:
ggplot(data = df, aes(x = , y = ) +
geom_line(aes(color = factored_variable))
For more detail: Plotting two variables as lines using ggplot2 on the same graph
Upvotes: 0