Reputation: 1127
I have a matrix with binary data representing whether each column field is relevant to each row element. I'm looking to create a two column dataframe identifying the name of each field associated with each row. How can I do this in R?
Here is an example of what I'm starting with:
A B C
W 1 1 0
X 0 1 1
Y 1 1 1
Z 0 1 1
And I'm looking to end up with this:
Element | Relevant Field
W|A
W|B
X|B
X|C
Y|A
Y|B
Y|C
Z|B
Z|C
Any hints? Thanks!
Upvotes: 1
Views: 280
Reputation: 38510
Here is another base R method that uses with
and subsetting.
# get the positions of 1s in matrix (row / column) output
posMat <- which(mm==1, arr.ind=TRUE)
# build the data.frame
myDf <- data.frame(rowVals=rownames(mm)[posMat[, 1]],
colVals=colnames(mm)[posMat[, 2]])
or other structures...
# matrix
myMat <- cbind(rowVals=rownames(mm)[posMat[, 1]],
colVals=colnames(mm)[posMat[, 2]])
# vector with pipe separator
myVec <- paste(rownames(mm)[posMat[, 1]], colnames(mm)[posMat[, 2]], sep="|")
Upvotes: 2
Reputation: 887501
We can use base R
methods
data.frame(Element = rep(rownames(m1), each = ncol(m1)),
Relevant_Field = rep(colnames(m1), nrow(m1)))[as.vector(t(m1))!=0,]
Or with CJ
library(data.table)
CJ(Element = row.names(m1), Relevant_Field = colnames(m1))[as.vector(t(m1)!=0)]
# Element Relevant_Field
#1: W A
#2: W B
#3: X B
#4: X C
#5: Y A
#6: Y B
#7: Y C
#8: Z B
#9: Z C
Or as @Frank suggested, we can melt
(using reshape2
) to a three column dataset, convert to data.table
and remove the 0 values
library(reshape2)
setDT(melt(m1))[ value == 1 ][, value := NULL][]
Upvotes: 3
Reputation: 206401
If your starting value is a matrix like this
mm <- matrix(c(1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L),
ncol=3, dimnames = list(c("W", "X", "Y", "Z"), c("A", "B", "C")))
You can treat it like a table and unroll the data faairly easily
subset(as.data.frame(as.table(mm)), Freq>0)
# Var1 Var2 Freq
# 1 W A 1
# 3 Y A 1
# 5 W B 1
# 6 X B 1
# 7 Y B 1
# 8 Z B 1
# 10 X C 1
# 11 Y C 1
# 12 Z C 1
Upvotes: 4