Reputation: 43
I've got a random forest which currently is built on 100 different variables. I want to be able to select only the "most important" variables to build my random forest on to try and improve performance but I don't know where to start other than getting the importance from rf$importance.
My data just consists of numerical variables which have all been scaled.
Below is my RF code:
rf.2 = randomForest(x~., data=train,importance=TRUE, ntree=1501)
#train
rf_prob_train = data.frame(predict(rf.2, newdata=train, type="prob"))
rf_prob_train <-data.frame(rf_prob_train$X0)
val_rf_train<-cbind(rf_prob_train,train$x)
names(val_rf_train)<-c("Probs","x")
##Run accuracy ratio
x<-data.frame(rcorr.cens(-val_rf_train$Probs, val_rf_train$x))
rf_train_AR<-x[2,1]
rf_train_AR
#test
rf_prob_test = data.frame(predict(rf.2, test, type="prob"))
rf_prob_test <-data.frame(rf_prob_test$X0)
val_rf_test<-cbind(rf_prob_test,test$x)
names(val_rf_test)<-c("Probs","x")
##Run accuracy ratio
x<-data.frame(rcorr.cens(-val_rf_test$Probs, val_rf_test$x))
rf_test_AR<-x[2,1]
rf_test_AR
Upvotes: 2
Views: 11676
Reputation: 841
Busy day, so I couldn't get this to you sooner. This gives you the general idea using a generic data set.
library(randomForest)
library(datasets)
head(iris)
#To make our formula for RF easier to manipulate
var.predict<-paste(names(iris)[-5],collapse="+")
rf.form <- as.formula(paste(names(iris)[5], var.predict, sep = " ~ "))
print(rf.form)
#This is our current itteration of the formula we're using in RF
iris.rf<-randomForest(rf.form,data=iris,importance=TRUE,ntree=100)
varImpPlot(iris.rf)
#Examine our Variable importance plot
to.remove<-c(which(data.frame(iris.rf$importance)$MeanDecreaseAccuracy==min(data.frame(iris.rf$importance)$MeanDecreaseAccuracy)))
#Remove the variable with the lowest decrease in Accuracy (Least relevant variable)
#Rinse, wash hands, repeat
var.predict<-paste(names(iris)[-c(5,to.remove)],collapse="+")
rf.form <- as.formula(paste(names(iris)[5], var.predict, sep = " ~ "))
iris.rf<-randomForest(rf.form,data=iris,importance=TRUE,ntree=100)
varImpPlot(iris.rf)
#Examine our Variable importance plot
to.remove<-c(to.remove, which(data.frame(iris.rf$importance)$MeanDecreaseAccuracy==min(data.frame(iris.rf$importance)$MeanDecreaseAccuracy)))
#And so on...
Upvotes: 7