Reputation: 1825
I have a pandas dataframe that contains a multitude of data like below:
temp_col
matt
joes\crabshack\one23
fail
joe:123,\
12345678,\
92313456,\
12341239123432,\
1321143
john
jacob
joe(x):543,\
9876544123,\
1234
How can take all of the data that ends with a ",\" and the remainder row that doesnt have one and merge them into a single row?
Expected output:
temp_col
matt
joes\crabshack\one23
fail
joe:1231234567892313456123412391234321321143
john
jacob
joe(x):54398765441231234
Upvotes: 0
Views: 62
Reputation: 1025
from pandas import DataFrame
df = DataFrame({'x': [
'matt',
'joes\crabshack\one23',
'fail',
'joe:123,\\',
'12345678,\\',
'92313456,\\',
'12341239123432,\\',
'1321143',
'john',
'jacob',
'joe(x):543,\\',
'9876544123,\\'
'1234']})
df['g'] = (1 - df['x'].str.endswith('\\').astype(int).shift().fillna(0)).cumsum()
df = df.groupby('g')['x'].sum().apply(lambda x: x.replace('\\', ''))
df
Upvotes: 0
Reputation: 7806
Since the data is wrapped (I'm assuming you see this '\' in there so it's part of the same cell. then it's just a comma delimited number.
df.columnnamehere.str.split(',').str.join(sep='')
or if '\' is an actual character not just for formatting
df.columnnamehere.str.split(',\').str.join(sep='')
Upvotes: 0
Reputation: 215067
You can try this:
(df.temp_col.groupby((~df.temp_col.str.contains(r",\\$")).shift().fillna(True).cumsum())
.apply(lambda x: "".join(x.str.rstrip(r",\\"))))
#temp_col
#1 matt
#2 joes\crabshack\one23
#3 fail
#4 joe:1231234567892313456123412391234321321143
#5 john
#6 jacob
#7 joe(x):54398765441231234
#Name: temp_col, dtype: object
Break down:
1) create a group variable where a new group is generated when the element doesn't end with ,\
:
g = (~df.temp_col.str.contains(r",\\$")).shift().fillna(True).cumsum()
g
#0 1
#1 2
#2 3
#3 4
#4 4
#5 4
#6 4
#7 4
#8 5
#9 6
#10 7
#11 7
#12 7
#Name: temp_col, dtype: int64
2) define a join
function that strips the ending comma and back slash;
join_clean = lambda x: "".join(x.str.rstrip(r",\\"))
3) apply the join function to each group to concatenate consecutive rows ending with ,\
:
df.temp_col.groupby(g).apply(join_clean)
#temp_col
#1 matt
#2 joes\crabshack\one23
#3 fail
#4 joe:1231234567892313456123412391234321321143
#5 john
#6 jacob
#7 joe(x):54398765441231234
#Name: temp_col, dtype: object
Upvotes: 1