Reputation: 87
I am trying to use boost proto to lazily evaluate expressions, what I want to do is be able to give different behaviours to tags like +, -, function etc.
function(
terminal(8functionILi2EE)
, plus(
multiplies(
terminal(6tensorILi0EE)
, terminal(6tensorILi1EE)
)
, multiplies(
terminal(6tensorILi2EE)
, terminal(6tensorILi3EE)
)
)
)
For a tree like above, I want to be able to specify how each of the tree nodes should behave.
For eg.
struct context : proto::callable_context< context const >
{
// Values to replace the tensors
std::vector<double> args;
// Define the result type of the zero.
// (This makes the zero_context "callable".)
typedef double result_type;
// Handle the tensors:
template<int I>
double operator()(proto::tag::terminal, tensor<I>) const
{
std::cout << this->args[I] << std::endl;
return this->args[I];
}
template<int I>
void operator()(proto::tag::plus) const
{
std::cout << " + " << std::endl;
}
};
When I do
double result = (_tensorA + _tensorB)(10, 20);
I expect my output to be
10
+
20
But it's just
10
20
Any help would be deeply appreciated! :)
Upvotes: 2
Views: 50
Reputation: 393134
template<int I>
void operator()(proto::tag::plus) const
{
std::cout << " + " << std::endl;
}
The template argument I
is non-deducible, so the overload will never be applicable. Drop the template argument:
void operator()(proto::tag::plus) const
{
std::cout << " + " << std::endl;
}
HOWEVER What you really want is intercept the binary operator. Well. Note it's binary. So it has two args:
template<size_t I, size_t J>
void operator()(proto::tag::plus, proto::literal<tensor<I>>&, proto::literal<tensor<J>>&) const {
std::cout << " + " << std::endl;
}
However, this blocks further evaluation of the expression tree. Not what you wanted, right. So, let's do a simplisitic re-implementation:
template<size_t I, size_t J>
double operator()(proto::tag::plus, proto::literal<tensor<I>>& a, proto::literal<tensor<J>>& b) const {
auto va = (*this)(proto::tag::terminal{}, a.get());
std::cout << " + " << std::endl;
auto vb = (*this)(proto::tag::terminal{}, b.get());
return va + vb;
}
However, something tells me you wanted generic expressions. So t1 + (t2 + t3)
should also work, but (t2 + t3)
is no literal...
Let's simplify by delegating:
template<typename A, typename B>
double operator()(proto::tag::plus, A& a, A& b) const {
auto va = proto::eval(a, *this);
std::cout << " + " << std::endl;
auto vb = proto::eval(b, *this);
return va + vb;
}
#include <boost/proto/proto.hpp>
#include <vector>
namespace proto = boost::proto;
template <size_t N> struct tensor { };
template <size_t N, size_t M> tensor<N+M> operator+(tensor<N>, tensor<M>) { return {}; }
struct context : proto::callable_context< context const >
{
using base_type = proto::callable_context<context const>;
// Values to replace the tensors
std::vector<double> args { 0, 111, 222, 333 };
// Define the result type of the zero.
// (This makes the zero_context "callable".)
typedef double result_type;
// Handle the tensors:
template<size_t I>
double operator()(proto::tag::terminal, tensor<I>) const
{
std::cout << this->args[I] << std::endl;
return this->args[I];
}
template<typename A, typename B>
double operator()(proto::tag::plus, A& a, B& b) const {
auto va = proto::eval(a, *this);
std::cout << " + " << std::endl;
auto vb = proto::eval(b, *this);
return va + vb;
}
};
int main() {
proto::literal<tensor<1> > t1;
proto::literal<tensor<2> > t2;
proto::literal<tensor<3> > t3;
auto r = proto::eval(t1 + (t2 + t3), context());
std::cout << "eval(t1 + (t2 + t3)) = " << r << "\n";
}
Prints
111
+
222
+
333
eval(t1 + (t2 + t3)) = 666
Upvotes: 1