Tania Alarcon
Tania Alarcon

Reputation: 75

Count a sequence to include NA values

Here is a sample data frame that resembles a larger data set:

Day <- c(1, 2, NA, 3, 4, NA, NA, NA, NA, NA, 1, 2, 3, NA, NA, NA, NA, 1, 2, NA, NA, 3, 4, 5)
y   <- rpois(length(Day), 2)
z   <- seq(1:length(Day)) + 500
df  <- data.frame(z, Day, y)

If there is a sequence of 4 or more missing values (NAs) in the Day column, that sequence represents a gap between cohorts in the study. If there are less than 4 NAs in a sequence, then the missing value is still considered part of the cohort (e.g. row 3 is part of cohort 1, but row 8 is not). In the sample data frame, there are 3 cohorts (Cohort 1: rows 1-5, Cohort 2: rows 11-13, and Cohort 3: rows 18-24). I would like to add a column listing the cohort number and another column listing the cohort study day. Here is the code I used:

require(dplyr)
CheckNA        <- rle(is.na(df$Day))
CheckNA$values <- CheckNA$lengths >= 4 & CheckNA$values == 1
ListNA         <- rep(CheckNA$values, CheckNA$lengths)
df$Co          <- rep(c(1, NA, 2, NA, 3), rle(ListNA)$lengths) %>% as.factor()

df <- df %>% 
  group_by (Co) %>% 
  mutate(CoDay = seq(Co)) %>% 
  as.data.frame()

df$CoDay <- ifelse(is.na(df$Co), NA, df$CoDay)

Is there a more efficient way to accomplish this task? I'm specially looking for code to avoid having to list the cohort number, since my actual data set will have over 10 cohorts. I currently just list the sequence that should be repeated: c(1, NA, 2, NA, 3).

Upvotes: 6

Views: 607

Answers (2)

Kristofersen
Kristofersen

Reputation: 2806

Here's a data.table solution. I'm not sure how the two functions would compare. We would have to benchmark them. Typically data.table is faster, but I ended up using a lot of steps here.

library(data.table)
Day <- c(1, 2, NA, 3, 4, NA, NA, NA, NA, NA, 1, 2, 3, NA, NA, NA, NA, 1, 2, NA, NA, 3, 4, 5)
y   <- rpois(length(Day), 2)
z   <- seq(1:length(Day)) + 500
df  <- data.frame(z, Day, y)

setDT(df)

df[ , "isNA" := ifelse(is.na(Day), 1, 0)]
df[ , "numNA" := rep(rle(isNA)$length*rle(isNA)$value, rle(isNA)$length)]
df[ , "Gap" := ifelse(numNA < 4, 0, 1)]
df[ , "Cohort" := cumsum(Gap)]

df[Gap == 1, "Cohort" := NA]
df[Gap == 0, "Cohort" := as.double(rleid(Cohort))]

> df
      z Day y isNA numNA Gap Cohort
 1: 501   1 1    0     0   0      1
 2: 502   2 2    0     0   0      1
 3: 503  NA 2    1     1   0      1
 4: 504   3 1    0     0   0      1
 5: 505   4 2    0     0   0      1
 6: 506  NA 2    1     5   1     NA
 7: 507  NA 1    1     5   1     NA
 8: 508  NA 0    1     5   1     NA
 9: 509  NA 4    1     5   1     NA
10: 510  NA 2    1     5   1     NA
11: 511   1 3    0     0   0      2
12: 512   2 3    0     0   0      2
13: 513   3 2    0     0   0      2
14: 514  NA 3    1     4   1     NA
15: 515  NA 1    1     4   1     NA
16: 516  NA 3    1     4   1     NA
17: 517  NA 2    1     4   1     NA
18: 518   1 4    0     0   0      3
19: 519   2 4    0     0   0      3
20: 520  NA 1    1     2   0      3
21: 521  NA 1    1     2   0      3
22: 522   3 3    0     0   0      3
23: 523   4 0    0     0   0      3
24: 524   5 3    0     0   0      3
      z Day y isNA numNA Gap Cohort

to cleanup the extra columns

df[ , c("isNA", "numNA", "Gap") := NULL]

EDIT MrFlick's is faster. I ran them both through microbenchmark.

> microbenchmark(data_table_way(df))
Unit: milliseconds
               expr      min       lq     mean   median       uq      max neval
 data_table_way(df) 2.515004 2.678493 2.879678 2.770054 2.923348 4.917869   100

> microbenchmark(dplyr_way())
Unit: milliseconds
        expr      min       lq     mean   median       uq      max neval
 dplyr_way() 1.564279 1.703792 1.814998 1.765713 1.824615 2.773641   100

Upvotes: 3

MrFlick
MrFlick

Reputation: 206546

I'd make a change here

CheckNA        <- rle(is.na(df$Day))
CheckNA$values <- CheckNA$lengths >= 4 & CheckNA$values == 1
CheckNA$values <- ifelse(!CheckNA$values, cumsum(CheckNA$values)+1, NA)
df$Co <- inverse.rle(CheckNA)

I kept the first two lines the same, then I used cumsum() to assign new IDs at each break. This means you won't have to hard-code any values. With the new values, you can use inverse.rle much in the same way you used rep() to expand the new ID out to each of the rows.

If you turn that into a function, you can clean up the dplyr bits

id_NA_break <- function(x) {
  CheckNA        <- rle(is.na(x))
  CheckNA$values <- CheckNA$lengths >= 4 & CheckNA$values == 1
  CheckNA$values <- ifelse(!CheckNA$values, cumsum(CheckNA$values)+1, NA)
  inverse.rle(CheckNA)  
}

df  <- data.frame(z, Day, y)
df %>% 
  mutate(Co=id_NA_break(Day)) %>%
  group_by(Co) %>% 
  mutate(CoDay = ifelse(is.na(Co), NA, seq(Co))) 

Upvotes: 5

Related Questions