Reputation: 3327
Lets say I have a bash script that looks like this:
array=( 1 2 3 4 5 6 )
for each in "${array[@]}"
do
echo "$each"
command --arg1 $each
done
If I want to run the everything in the loop in parallel, I could just change command --arg1 $each
to command --arg1 $each &
.
But now lets say I want to take the results of command --arg1 $each
and do something with those results like this:
array=( 1 2 3 4 5 6 )
for each in "${array[@]}"
do
echo "$each"
lags=($(command --arg1 $each)
lngth_lags=${#lags[*]}
for (( i=1; i<=$(( $lngth_lags -1 )); i++))
do
result=${lags[$i]}
echo -e "$timestamp\t$result" >> $log_file
echo "result piped"
done
done
If I just add a &
to the end of command --arg1 $each
, everything after command --arg1 $each
will run without command --arg1 $each
finishing first. How do I prevent that from happening? Also, how do I also limit the amount of threads the loop can occupy?
Essentially, this block should run in parallel for 1,2,3,4,5,6
echo "$each"
lags=($(command --arg1 $each)
lngth_lags=${#lags[*]}
for (( i=1; i<=$(( $lngth_lags -1 )); i++))
do
result=${lags[$i]}
echo -e "$timestamp\t$result" >> $log_file
echo "result piped"
done
-----EDIT--------
Here is the original code:
#!/bin/bash
export KAFKA_OPTS="-Djava.security.krb5.conf=/etc/krb5.conf -Djava.security.auth.login.config=/etc/kafka/kafka.client.jaas.conf"
IFS=$'\n'
array=($(kafka-consumer-groups --bootstrap-server kafka1:9092 --list --command-config /etc/kafka/client.properties --new-consumer))
lngth=${#array[*]}
echo "array length: " $lngth
timestamp=$(($(date +%s%N)/1000000))
log_time=`date +%Y-%m-%d:%H`
echo "log time: " $log_time
log_file="/home/ec2-user/laglogs/laglog.$log_time.log"
echo "log file: " $log_file
echo "timestamp: " $timestamp
get_lags () {
echo "$1"
lags=($(kafka-consumer-groups --bootstrap-server kafka1:9092 --describe --group $1 --command-config /etc/kafka/client.properties --new-consumer))
lngth_lags=${#lags[*]}
for (( i=1; i<=$(( $lngth_lags -1 )); i++))
do
result=${lags[$i]}
echo -e "$timestamp\t$result" >> $log_file
echo "result piped"
done
}
for each in "${array[@]}"
do
get_lags $each &
done
------EDIT 2-----------
Trying with answer below:
#!/bin/bash
export KAFKA_OPTS="-Djava.security.krb5.conf=/etc/krb5.conf -Djava.security.auth.login.config=/etc/kafka/kafka.client.jaas.conf"
IFS=$'\n'
array=($(kafka-consumer-groups --bootstrap-server kafka1:9092 --list --command-config /etc/kafka/client.properties --new-consumer))
lngth=${#array[*]}
echo "array length: " $lngth
timestamp=$(($(date +%s%N)/1000000))
log_time=`date +%Y-%m-%d:%H`
echo "log time: " $log_time
log_file="/home/ec2-user/laglogs/laglog.$log_time.log"
echo "log file: " $log_file
echo "timestamp: " $timestamp
max_proc_count=8
run_for_each() {
local each=$1
echo "Processing: $each" >&2
IFS=$'\n' read -r -d '' -a lags < <(kafka-consumer-groups --bootstrap-server kafka1:9092 --describe --command-config /etc/kafka/client.properties --new-consumer --group "$each" && printf '\0')
for result in "${lags[@]}"; do
printf '%(%Y-%m-%dT%H:%M:%S)T\t%s\t%s\n' -1 "$each" "$result"
done >>"$log_file"
}
export -f run_for_each
export log_file # make log_file visible to subprocesses
printf '%s\0' "${array[@]}" |
xargs -P "$max_proc_count" -n 1 -0 bash -c 'run_for_each "$@"'
Upvotes: 5
Views: 6320
Reputation: 33685
Using GNU Parallel it looks like this:
array=( 1 2 3 4 5 6 )
parallel -0 --bar --tagstring '{= $_=localtime(time)."\t".$_; =}' \
command --arg1 {} ::: "${array[@]}" > output
GNU Parallel makes sure output from different jobs is not mixed.
If you prefer the output from jobs mixed:
parallel -0 --bar --line-buffer --tagstring '{= $_=localtime(time)."\t".$_; =}' \
command --arg1 {} ::: "${array[@]}" > output-linebuffer
Again GNU Parallel makes sure to only mix with full lines: You will not see half a line from one job and half a line from another job.
It also works if the array is a bit more nasty:
array=( "new
line" 'quotes" '"'" 'echo `do not execute me`')
Or if the command prints long lines half-lines:
command() {
echo Input: "$@"
echo '" '"'"
sleep 1
echo -n 'Half a line '
sleep 1
echo other half
superlong_a=$(perl -e 'print "a"x1000000')
superlong_b=$(perl -e 'print "b"x1000000')
echo -n $superlong_a
sleep 1
echo $superlong_b
}
export -f command
GNU Parallel strives to be a general solution. This is because I have designed GNU Parallel to care about correctness and try vehemently to deal correctly with corner cases, too, while staying reasonably fast.
GNU Parallel guards against race conditions and does not split words in the output on each their line.
array=( $(seq 30) )
max_proc_count=30
command() {
# If 'a', 'b' and 'c' mix: Very bad
perl -e 'print "a"x3000_000," "'
perl -e 'print "b"x3000_000," "'
perl -e 'print "c"x3000_000," "'
echo
}
export -f command
parallel -0 --bar --tagstring '{= $_=localtime(time)."\t".$_; =}' \
command --arg1 {} ::: "${array[@]}" > parallel.out
# 'abc' should always stay together
# and there should only be a single line per job
cat parallel.out | tr -s abc
GNU Parallel works fine if the output has a lot of words:
array=(1)
command() {
yes "`seq 1000`" | head -c 10M
}
export -f command
parallel -0 --bar --tagstring '{= $_=localtime(time)."\t".$_; =}' \
command --arg1 {} ::: "${array[@]}" > parallel.out
GNU Parallel does not eat all your memory - even if the output is bigger than your RAM:
array=(1)
outputsize=1000M
export outputsize
command() {
yes "`perl -e 'print \"c\"x30_000'`" | head -c $outputsize
}
export -f command
parallel -0 --bar --tagstring '{= $_=localtime(time)."\t".$_; =}' \
command --arg1 {} ::: "${array[@]}" > parallel.out
Upvotes: 1
Reputation: 2724
A lot of lenghty and theoretical answers here, I'll try to keep it simple - what about using |
(pipe) to connect the commands as usual ?;) (And GNU parallel
, which excels for these type of tasks).
seq 6 | parallel -j4 "command --arg1 {} | command2 > results/{}"
The -j4
will limit number of threads (jobs) as requested. You DON'T want to write to a single file from multiple jobs, output one file per job and join them after the parallel processing is finished.
Upvotes: 4
Reputation: 295291
The convenient thing to do is to push your background code into a separate script -- or an exported function. That way xargs
can create a new shell, and access the function from its parent. (Be sure to export
any other variables that need to be available in the child as well).
array=( 1 2 3 4 5 6 )
max_proc_count=8
log_file=out.txt
run_for_each() {
local each=$1
echo "Processing: $each" >&2
IFS=$' \t\n' read -r -d '' -a lags < <(yourcommand --arg1 "$each" && printf '\0')
for result in "${lags[@]}"; do
printf '%(%Y-%m-%dT%H:%M:%S)T\t%s\t%s\n' -1 "$each" "$result"
done >>"$log_file"
}
export -f run_for_each
export log_file # make log_file visible to subprocesses
printf '%s\0' "${array[@]}" |
xargs -P "$max_proc_count" -n 1 -0 bash -c 'run_for_each "$@"'
Some notes:
echo -e
is bad form. See the APPLICATION USAGE and RATIONALE sections in the POSIX spec for echo
, explicitly advising using printf
instead (and not defining an -e
option, and explicitly defining than echo
must not accept any options other than -n
).each
value in the log file so it can be extracted from there later.yourcommand
is space-delimited, tab-delimited, line-delimited, or otherwise. I'm thus accepting all these for now; modify the value of IFS
passed to the read
to taste.printf '%(...)T'
to get a timestamp without external tools such as date
requires bash 4.2 or newer. Replace with your own code if you see fit.read -r -a arrayname < <(...)
is much more robust than arrayname=( $(...) )
. In particular, it avoids treating emitted values as globs -- replacing *
s with a list of files in the current directory, or Foo[Bar]
with FooB
should any file by that name exist (or, if the failglob
or nullglob
options are set, triggering a failure or emitting no value at all in that case).log_file
once for the entire loop is somewhat more efficient than redirecting it every time you want to run printf
once. Note that having multiple processes writing to the same file at the same time is only safe if all of them opened it with O_APPEND
(which >>
will do), and if they're writing in chunks small enough to individually complete as single syscalls (which is probably happening unless the individual lags
values are quite large).Upvotes: 4
Reputation: 295291
(Community Wiki answer with the OP's proposed self-answer from the question -- now edited out):
So here is one way I can think of doing this, not sure if this is the most efficient way and also, I can't control the amount of threads (I think, or processes?) this would use:
array=( 1 2 3 4 5 6 )
lag_func () {
echo "$1"
lags=($(command --arg1 $1)
lngth_lags=${#lags[*]}
for (( i=1; i<=$(( $lngth_lags -1 )); i++))
do
result=${lags[$i]}
echo -e "$timestamp\t$result" >> $log_file
echo "result piped"
done
}
for each in "${array[@]}"
do
lag_func $each &
done
Upvotes: 0
Reputation: 6995
You know how to execute commands in separate processes. The missing part is how to allow those processes to communicate, as separate processes cannot share variables.
Basically, you must chose whether to communicate using regular files, or inter-process communication/FIFOs (which still boils down to using files).
The general approach :
Decide how you want to present tasks to be executed. You could have them as separate files on the filesystem, as a FIFO special file that can be read from, etc. This could be a simple as writing to a separate file each command to be executed, or writing each command to a FIFO (one command per line).
In the main process, prepare the files describing tasks to perform or launch a separate process in the background that will feed the FIFO.
Then, still in the main process, launch worker processes in the background (with &
), as many of them as you want parallel tasks being executed (not one per task to perform). Once they have been launched, use wait
to, well, wait until all processes are finished. Separate processes cannot share variables, you will have to write any output that needs to be used later to separate files, or a FIFO, etc. If using a FIFO, remember more than one process can write to a FIFO at the same time, so use some kind of mutex mechanism (I suggest looking into the use of mkdir
/rmdir
for that purpose).
Each worker process must fetch the next task (from a file/FIFO), execute it, generate the output (to a file/FIFO), loop until there are no new tasks, then exit. If using files, you will need to use a mutex to "reserve" a file, read it, and then delete it to mark it as taken care of. This would not be needed for a FIFO.
Depending on the case, your main process may have to wait until all tasks are finished before handling the output, or in some cases may launch a worker process that will detect and handle output as it appears. This worker process would have to either be stopped by the main process once all tasks have been executed, or figure out for itself when all tasks have been executed and exit (while being wait
ed on by the main process).
This is not detailed code, but I hope it gives you an idea of how to approach problems like this.
Upvotes: 0