Reputation: 75869
I'm currently writing a quick solution for Euler Problem #4 where one must find the largest palindromic number from the product of two 3-digit numbers.
To identify if a number is palindromic, you would obviously compare a reverse of the number with the original.
Since C# doesn't have a built in String.Reverse() method, what is the quickest way to reverse a string?
I will be testing all the suggested solution in a loop with 100,000,000 iterations. The correct answer will be given to the person who submitted the fastest solution.
I will be testing the solution in a C#.Net 3.5 console application
Upvotes: 12
Views: 12155
Reputation: 151
The fastest way I have found to reverse a string in C# is with the following code. It's faster reading in 32bits at a time instead of a char's length of 16bits. In debug mode, it is faster until you get to about 93 characters. Anything longer than that Array.Reverse() is faster. Using a release build and running outside of the IDE, this method will blow Array.Reverse() out of the water at any string length.
char[] MyCharArray = MyString.ToCharArray();
UIntStringReverse(ref MyCharArray); //Code to reverse is below.
string ReversedString = new string(MyCharArray);
private static unsafe void UIntStringReverse(ref char[] arr)
{
uint Temp;
uint Temp2;
fixed (char* arrPtr = &arr[0])
{
uint* p, q;
p = (uint*)(arrPtr);
q = (uint*)(arrPtr + arr.LongLength - 2);
if (arr.LongLength == 2)
{
Temp = *p;
*p = ((Temp & 0xFFFF0000) >> 16) | ((Temp & 0x0000FFFF) << 16);
return;
}
while (p < q)
{
Temp = *p;
Temp2 = *q;
*p = ((Temp2 & 0xFFFF0000) >> 16) | ((Temp2 & 0x0000FFFF) << 16);
*q = ((Temp & 0xFFFF0000) >> 16) | ((Temp & 0x0000FFFF) << 16);
p++;
q--;
}
}
}
Upvotes: 1
Reputation: 22443
The Stopwatch class needs reset after each run. the code below has been corrected
var d = s.ToCharArray();
Array.Reverse(d);
return s == new string(d);
using System;
using System.Diagnostics;
namespace longeststring_codegolf
{
class Program
{
static void Main(string[] args)
{
int t = 0, v = 0;
var sw = new Stopwatch();
sw.Start();
for (int i = 999; i > 99; i--)
for (int j = 999; j > 99; j--)
if ((v = i * j) > t && IsPalindromicMine(v.ToString()))
t = v;
sw.Stop();
var elapsed = sw.Elapsed;
var elapsedMilliseconds = sw.ElapsedMilliseconds;
var elapsedTicks = sw.ElapsedTicks;
Console.WriteLine("Ticks: " + elapsedTicks.ToString());//~189000
Console.WriteLine("Milliseconds: " + elapsedMilliseconds.ToString()); //~9
sw = Stopwatch.StartNew();
for (int i = 999; i > 99; i--)
for (int j = 999; j > 99; j--)
if ((v = i * j) > t && IsPalindromic(v.ToString()))
t = v;
sw.Stop();
var elapsed2 = sw.Elapsed;
var elapsedMilliseconds2 = sw.ElapsedMilliseconds;
var elapsedTicks2 = sw.ElapsedTicks;
Console.WriteLine("Ticks: " + elapsedTicks2.ToString());//~388000
Console.WriteLine("Milliseconds: " + elapsedMilliseconds2.ToString());//~20
}
static bool IsPalindromicMine(string s)
{
var d = s.ToCharArray();
Array.Reverse(d);
return s == new string(d);
}
static bool IsPalindromic(string s)
{
int len = s.Length;
int half = len-- >> 1;
for (int i = 0; i < half; i++)
if (s[i] != s[len - i])
return false;
return true;
}
}
}
Upvotes: -1
Reputation: 3647
A you want to compare a number with its reverse it may be faster to reverse the number using division rather than converting it to a string. I still need to test the speed of it.
private static int Reverse(int num) {
int res = 0;
while (num > 0) {
int rm ;
num = Math.DivRem(num, 10, out rm);
res = res * 10 + rm;
}
return res;
}
EDIT: DivRem was about 1% faster than division and module in my computer. A speed optimization is exit if the last digit is 0:
private static int Reverse(int num) {
int res = 0;
int rm;
num = Math.DivRem(num, 10, out rm);
//Some magic value or return false, see below.
if (rm == 0) return -1 ;
res = res * 10 + rm;
while (num > 0) {
num = Math.DivRem(num, 10, out rm);
res = res * 10 + rm;
}
return res ;
}
Making the method return a bool was slightly slower than comparing to a bool in a loop in my computer, but I don't understand why. Please test in your computer.
Multiplication and bit-shifing should be faster than division but probably are not precise enough. EDIT: using long seems be precise enough.
private static int FastReverse(int num) {
int res = 0;
int q = (int)((214748365L * num) >> 31);
int rm = num - 10 * q;
num = q;
if (rm == 0) return -1;
res = res * 10 + rm;
while (num > 0) {
q = (int)((214748365L * num) >> 31);
rm = num - 10 * q;
num = q;
res = res * 10 + rm;
}
return res;
}
(214748365L * num) >> 31 is equal to i / 10 until 1,073,741,829 where 1 / 10 gives 107374182 and the multiplication + binary shifting gives 107374183.
Upvotes: 14
Reputation: 75869
Using ggf31416's FastReverse function, here is the solution to Project Euler's Problem #4 which completes on my computer in 47ms.
using System;
using System.Diagnostics;
namespace Euler_Problem_4
{
class Program
{
static void Main(string[] args)
{
Stopwatch s = new Stopwatch();
s.Start();
int t = 0;
for (int i = 999; i > 99; i--)
{
for (int j = i; j > 99; j--)
{
if (i*j == FastReverse(i*j))
{
if (i * j > t)
{
t = i * j;
}
}
}
}
Console.WriteLine(t);
s.Stop();
Console.WriteLine("{0}mins {1}secs {2}ms", s.Elapsed.Minutes, s.Elapsed.Seconds, s.Elapsed.Milliseconds);
Console.ReadKey(true);
}
private static int FastReverse(int num)
{
int res = 0;
int q = (int)((214748365L * num) >> 31);
int rm = num - 10 * q;
num = q;
if (rm == 0) return -1;
res = res * 10 + rm;
while (num > 0)
{
q = (int)((214748365L * num) >> 31);
rm = num - 10 * q;
num = q;
res = res * 10 + rm;
}
return res;
}
}
}
Upvotes: 0
Reputation: 29527
I think it might be faster to do the comparison in-place. If you reverse the string, you've got to:
If you perform the comparison in place, you do only the last step. An even then, your comparison is only half the string (or half - 0.5, in the event of an odd number of characters). Something like the following should work:
static bool IsPalindromic(string s){
int len = s.Length;
int half = len-- >> 1;
for(int i = 0; i < half; i++)
if(s[i] != s[len - i])
return false;
return true;
}
EDIT:
Although this answers the OP's question, the solutions offered by ggf31416 and configurator solve the OP's real need about 30% faster, by my tests. configurator's solution is a tiny bit faster than ggf31416's, if you convert it to a static method and use int
s instead of ulong
s (but much slower, otherwise).
Incidentally, running through these examples to solve the problem the OP mentions (finding the largest palindromic product of any two three-digit numbers) with the simple (perhaps naïve) loop below:
for(int i = 100; i < 1000; i++)
for(int j = i; j < 1000; j++) // calculations where j < i would be redundant
...
yields the following results on my machine:
IsPalindromic(product.ToString()) took 0.3064174 seconds. ggf31416Reverse(product) == product took 0.1933994 seconds. configuratorReverse(product) == product took 0.1872061 seconds.
Each produces the correct result of 913 * 993 = 906609
.
Upvotes: 12
Reputation: 754763
public static String Reverse(string input) {
var length = input.Length;
var buffer = new char[length];
for ( var i= 0; i < input.Length; i++ ) {
buffer[i] = input[(length-i)-1];
}
return new String(buffer);
}
EDIT: Doh! Forgot to halve the length for perf :)
Upvotes: 1
Reputation: 41630
Wouldn't reversing the number be faster?
// unchecked code, don't kill me if it doesn't even compile.
ulong Reverse(ulong number) {
ulong result = 0;
while (number > 0) {
ulong digit = number % 10;
result = result * 10 + digit;
number /= 10;
}
return result;
}
Upvotes: 20
Reputation: 7238
string Reverse(string s)
{
return new string(s.ToCharArray().Reverse().ToArray());
}
Upvotes: 0
Reputation:
string test = "ABC";
string reversed = new String(test.ToCharArray().Reverse().ToArray());
Upvotes: 3
Reputation: 15677
try this too: http://weblogs.sqlteam.com/mladenp/archive/2006/03/19/9350.aspx
Upvotes: 0
Reputation: 35267
Performance: Fastest string reversing algorithms... (final results)
Upvotes: 4