Reputation: 1101
I'm doing one hot encoding over a categorical column which has some 18 different kind of values. I want to create new columns for only those values, which appear more than some threshold (let's say 1%), and create another column named other values
which has 1 if value is other than those frequent values.
I'm using Pandas with Sci-kit learn. I've explored pandas get_dummies
and sci-kit learn's one hot encoder
, but can't figure out how to bundle together less frequent values into one column.
Upvotes: 6
Views: 2555
Reputation: 2983
The previous solutions do not scale quite well when the dataframe is large.
The situation also becomes complicated when you want to perform one-hot encoding for one column only and your original dataframe has more than one columns.
Here is a more general and scalable (faster) solution.
It is illustrated with an example df
with two columns and 1 million rows:
import pandas as pd
import string
df = pd.DataFrame(
{'1st': [random.sample(["orange", "apple", "banana"], k=1)[0] for i in range(1000000)],\
'2nd': [random.sample(list(string.ascii_lowercase), k=1)[0] for i in range(1000000)]}
)
The first 10 rows df.head(10)
is:
1st 2nd
0 banana t
1 orange t
2 banana m
3 banana g
4 banana g
5 orange a
6 apple x
7 orange s
8 orange d
9 apple u
The statistics df['2nd'].value_counts()
is :
s 39004
k 38726
n 38720
b 38699
t 38688
p 38646
u 38638
w 38611
y 38587
o 38576
q 38559
x 38558
r 38545
i 38497
h 38429
v 38385
m 38369
j 38278
f 38262
e 38241
a 38241
l 38236
g 38210
z 38202
c 38058
d 38035
threshold = 38500
others
%timeit df.loc[df['2nd'].value_counts()[df['2nd']].values < threshold, '2nd'] = "others"
Time taken is 206 ms ± 346 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
.
df = pd.get_dummies(df, columns = ['2nd'], prefix='', prefix_sep='')
The first 10 rows after one-hot encoding df.head(10)
becomes
1st b k n o others p q r s t u w x y
0 banana 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 orange 0 0 0 0 0 0 0 0 0 1 0 0 0 0
2 banana 0 0 0 0 1 0 0 0 0 0 0 0 0 0
3 banana 0 0 0 0 1 0 0 0 0 0 0 0 0 0
4 banana 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5 orange 0 0 0 0 1 0 0 0 0 0 0 0 0 0
6 apple 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 orange 0 0 0 0 0 0 0 0 1 0 0 0 0 0
8 orange 0 0 0 0 1 0 0 0 0 0 0 0 0 0
9 apple 0 0 0 0 0 0 0 0 0 0 1 0 0 0
others
to be the last column of the df
, you can try:df = df[[col for col in df.columns if col != 'others'] + ['others']]
This shifts others
to the last column.
1st b k n o p q r s t u w x y others
0 banana 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 orange 0 0 0 0 0 0 0 0 1 0 0 0 0 0
2 banana 0 0 0 0 0 0 0 0 0 0 0 0 0 1
3 banana 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4 banana 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5 orange 0 0 0 0 0 0 0 0 0 0 0 0 0 1
6 apple 0 0 0 0 0 0 0 0 0 0 0 1 0 0
7 orange 0 0 0 0 0 0 0 1 0 0 0 0 0 0
8 orange 0 0 0 0 0 0 0 0 0 0 0 0 0 1
9 apple 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Upvotes: 0
Reputation: 310
pip install siuba
#( in python or anaconda prompth shell)
#use library as:
from siuba.dply.forcats import fct_lump, fct_reorder
#just like fct_lump of R :
df['Your_column'] = fct_lump(df['Your_column'], n= 10)
df['Your_column'].value_counts() # check your levels
#it reduces the level to 10, lumps all the others as 'Other'
R has a good function fct_lump for this purpose, now it is copied to python, simply you select the number of levels to keep and all the other levels will be bundled as 'others' .
Upvotes: 0
Reputation: 294228
plan
pd.get_dummies
to one hot encode as normalsum() < threshold
to identify columns that get aggregated
pd.value_counts
with the parameter normalize=True
to get percentage of occurance.join
def hot_mess2(s, thresh):
d = pd.get_dummies(s)
f = pd.value_counts(s, sort=False, normalize=True) < thresh
if f.sum() == 0:
return d
else:
return d.loc[:, ~f].join(d.loc[:, f].sum(1).rename('other'))
Consider the pd.Series
s
s = pd.Series(np.repeat(list('abcdef'), range(1, 7)))
s
0 a
1 b
2 b
3 c
4 c
5 c
6 d
7 d
8 d
9 d
10 e
11 e
12 e
13 e
14 e
15 f
16 f
17 f
18 f
19 f
20 f
dtype: object
hot_mess(s, 0)
a b c d e f
0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 1 0 0 0
5 0 0 1 0 0 0
6 0 0 0 1 0 0
7 0 0 0 1 0 0
8 0 0 0 1 0 0
9 0 0 0 1 0 0
10 0 0 0 0 1 0
11 0 0 0 0 1 0
12 0 0 0 0 1 0
13 0 0 0 0 1 0
14 0 0 0 0 1 0
15 0 0 0 0 0 1
16 0 0 0 0 0 1
17 0 0 0 0 0 1
18 0 0 0 0 0 1
19 0 0 0 0 0 1
20 0 0 0 0 0 1
hot_mess(s, .1)
c d e f other
0 0 0 0 0 1
1 0 0 0 0 1
2 0 0 0 0 1
3 1 0 0 0 0
4 1 0 0 0 0
5 1 0 0 0 0
6 0 1 0 0 0
7 0 1 0 0 0
8 0 1 0 0 0
9 0 1 0 0 0
10 0 0 1 0 0
11 0 0 1 0 0
12 0 0 1 0 0
13 0 0 1 0 0
14 0 0 1 0 0
15 0 0 0 1 0
16 0 0 0 1 0
17 0 0 0 1 0
18 0 0 0 1 0
19 0 0 0 1 0
20 0 0 0 1 0
Upvotes: 4
Reputation: 13705
How about something like the following:
create a data frame
df = pd.DataFrame(data=list('abbgcca'), columns=['x'])
df
x
0 a
1 b
2 b
3 g
4 c
5 c
6 a
Replace values that are present less frequently than a given threshold. I'll create a copy of the column so that I'm not modifying the original dataframe. First step is to create a dictionary of the value_counts
and then replace the actual values with those counts so that they can be compared to the threshold. Set values below that threshold to 'other values' then use pd.get_dummies
to get the dummy variables
#set the threshold for example 20%
thresh = 0.2
x = df.x.copy()
#replace any values present less than the threshold with 'other values'
x[x.replace(x.value_counts().to_dict()) < len(x)*thresh] = 'other values'
#get dummies
pd.get_dummies(x)
a b c other values
0 1.0 0.0 0.0 0.0
1 0.0 1.0 0.0 0.0
2 0.0 1.0 0.0 0.0
3 0.0 0.0 0.0 1.0
4 0.0 0.0 1.0 0.0
5 0.0 0.0 1.0 0.0
6 1.0 0.0 0.0 0.0
Alternatively you could use Counter
it may be a bit cleaner
from collections import Counter
x[x.replace(Counter(x)) < len(x)*thresh] = 'other values'
Upvotes: 4