Reputation: 125
I have a data-frame which is df.
id time internet lat lng
103 1 1385913600 14.057844 1 0
247 2 1385913600 14.062213 2 0
391 3 1385913600 14.066863 3 0
535 4 1385913600 14.045190 4 0
679 5 1385913600 12.772210 5 0
823 10 1385913600 8.101804 10 0
I added a new column and put values of all of them 0 by using one of the below methods:
df["cluster"] <- 0
df$cluster <- 0
And then by using my algorithm I changed value of each df$cluster which you can see the method I used to change value of df$cluster:
clusternumber <- clusternumber + 1
df$cluster[df$id == minid] <- clusternumber
At the end I got the result I'm looking but I've faced with a new problem. When I'm trying to get summary of my result I'm getting strange result.
> summary(df)
id internet lat lng cluster
Min. : 1 Min. : 0.00 Min. : 1.00 Min. : 0.00 1 : 121
1st Qu.: 2500 1st Qu.: 15.57 1st Qu.: 25.25 1st Qu.: 25.00 2 : 121
Median : 5000 Median : 36.09 Median : 51.00 Median : 49.50 3 : 121
Mean : 5000 Mean : 75.73 Mean : 50.50 Mean : 49.51 4 : 121
3rd Qu.: 7501 3rd Qu.: 78.88 3rd Qu.: 75.75 3rd Qu.: 75.00 9 : 121
Max. :10000 Max. :6663.23 Max. :100.00 Max. :100.00 15 : 121
(Other):9272
I'm looking to know how do I have to make a new column or change value of a column because now I'm getting this:
> summary(df$cluster)
1 2 3 4 9 15 16 17 34 52 85 147 8 6 7 36
121 121 other(2727)
Upvotes: 0
Views: 84
Reputation: 39154
The output of your summary
function clearly shows that the cluster
column is factor
. Below is a simple example.
# Create an example data frame
dat <- data.frame(Col_f = c("1.1", "1.1", "2.1", "2.1", "3.1", "3.1",
"4.1", "4.1", "4.1"),
Col_n = c(1.1, 1.1, 2.1, 2.1, 3.1, 3.1, 4.1, 4.1, 4.1))
# Check the structure of the data frame
str(dat)
# 'data.frame': 9 obs. of 2 variables:
# $ Col_f: Factor w/ 4 levels "1.1","2.1","3.1",..: 1 1 2 2 3 3 4 4 4
# $ Col_n: num 1.1 1.1 2.1 2.1 3.1 3.1 4.1 4.1 4.1
# Use summary
summary(dat)
# Col_f Col_n
# 1.1:2 Min. :1.100
# 2.1:2 1st Qu.:2.100
# 3.1:2 Median :3.100
# 4.1:3 Mean :2.767
# 3rd Qu.:4.100
# Max. :4.100
Notice that in Col_f
summary
function simply reports the number in each level.
To convert the factor
to numeric
, You may want to convert the column to character
first, then convert to numeric. Here is an example.
# Convert the column of factor to numeric
dat$Col_fn <- as.numeric(as.character(dat$Col_f))
Notice that Col_fn
is the same as Col_n
.
# Call str again
str(dat)
# 'data.frame': 9 obs. of 3 variables:
# $ Col_f : Factor w/ 4 levels "1.1","2.1","3.1",..: 1 1 2 2 3 3 4 4 4
# $ Col_n : num 1.1 1.1 2.1 2.1 3.1 3.1 4.1 4.1 4.1
# $ Col_fn: num 1.1 1.1 2.1 2.1 3.1 3.1 4.1 4.1 4.1
If you directly convert factor
to numeric, it will be based on the level. Here is an example.
# Convert the column of factor to numeric
dat$Col_ff <- as.numeric(dat$Col_f)
# Use str again
str(dat)
# 'data.frame': 9 obs. of 4 variables:
# $ Col_f : Factor w/ 4 levels "1.1","2.1","3.1",..: 1 1 2 2 3 3 4 4 4
# $ Col_n : num 1.1 1.1 2.1 2.1 3.1 3.1 4.1 4.1 4.1
# $ Col_fn: num 1.1 1.1 2.1 2.1 3.1 3.1 4.1 4.1 4.1
# $ Col_ff: num 1 1 2 2 3 3 4 4 4
Notice that col_ff are integers ranging from 1
to 4
because those were the level numbers.
Upvotes: 1