Reputation: 21533
I have a dataset, in which the hour is recorded as [0100:2400]
, instead of [0000:2300]
For example
pd.to_datetime('201704102300', format='%Y%m%d%H%M')
returns
Timestamp('2017-04-10 20:00:00')
But
pd.to_datetime('201704102400', format='%Y%m%d%H%M')
gives me the error:
ValueError: unconverted data remains: 0
How can I fix this problem?
I can manually adjust the data, such as mentioned in this SO Post, but I think pandas should have handled this case already?
UPDATE:
And how to do it in a scalable way for dataframe? For example, the data look like this
Upvotes: 9
Views: 6644
Reputation: 25574
Building on @MaxU's answer, some more efficiency can be gained by slicing the input string, parsing the date to datetime directly and adding the rest as timedelta. Ex:
df = pd.DataFrame({'time': ["201704102400", "201602282400","201704102359"]})
df['time'] = (pd.to_datetime(df['time'].str[:8], format='%Y%m%d') +
pd.to_timedelta(df['time'].str[8:10]+':'+df['time'].str[10:12]+':00'))
df['time']
0 2017-04-11 00:00:00
1 2016-02-29 00:00:00
2 2017-04-10 23:59:00
Name: time, dtype: datetime64[ns]
Relative %timeit
comparison for 30k elements df shows a comfortable x2 improvement:
%timeit pd.to_datetime(df['time'].str[:8], format='%Y%m%d') + pd.to_timedelta(df['time'].str[8:10]+':'+df['time'].str[10:12]+':00')
50 ms ± 270 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit pd.to_datetime(df['time'].str.extract(pat, expand=True))
122 ms ± 1.3 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit df.time.apply(my_to_datetime)
3.34 s ± 3.26 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Upvotes: 0
Reputation: 210872
Vectorized solution, which uses pd.to_datetime(DataFrame) method:
Source DF
In [27]: df
Out[27]:
time
0 201704102400
1 201602282400
2 201704102359
Solution
In [28]: pat = '(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})(?P<hour>\d{2})(?P<minute>\d{2})'
In [29]: pd.to_datetime(df['time'].str.extract(pat, expand=True))
Out[29]:
0 2017-04-11 00:00:00
1 2016-02-29 00:00:00
2 2017-04-10 23:59:00
dtype: datetime64[ns]
Explanation:
In [30]: df['time'].str.extract(pat, expand=True)
Out[30]:
year month day hour minute
0 2017 04 10 24 00
1 2016 02 28 24 00
2 2017 04 10 23 59
pat
is the RegEx pattern argument in the Series.str.extract() function
UPDATE: Timing
In [37]: df = pd.concat([df] * 10**4, ignore_index=True)
In [38]: df.shape
Out[38]: (30000, 1)
In [39]: %timeit df.time.apply(my_to_datetime)
1 loop, best of 3: 4.1 s per loop
In [40]: %timeit pd.to_datetime(df['time'].str.extract(pat, expand=True))
1 loop, best of 3: 475 ms per loop
Upvotes: 8
Reputation: 49814
Pandas uses the system strptime
, and so if you need something non-standard, you get to roll your own.
Code:
import pandas as pd
import datetime as dt
def my_to_datetime(date_str):
if date_str[8:10] != '24':
return pd.to_datetime(date_str, format='%Y%m%d%H%M')
date_str = date_str[0:8] + '00' + date_str[10:]
return pd.to_datetime(date_str, format='%Y%m%d%H%M') + \
dt.timedelta(days=1)
print(my_to_datetime('201704102400'))
Results:
2017-04-11 00:00:00
For a Column in a pandas.DataFrame
:
df['time'] = df.time.apply(my_to_datetime)
Upvotes: 11