Reputation: 3717
I am using both Nltk and Scikit Learn to do some text processing. However, within my list of documents I have some documents that are not in English. For example, the following could be true:
[ "this is some text written in English",
"this is some more text written in English",
"Ce n'est pas en anglais" ]
For the purposes of my analysis, I want all sentences that are not in English to be removed as part of pre-processing. However, is there a good way to do this? I have been Googling, but cannot find anything specific that will let me recognize if strings are in English or not. Is this something that is not offered as functionality in either Nltk
or Scikit learn
? EDIT I've seen questions both like this and this but both are for individual words... Not a "document". Would I have to loop through every word in a sentence to check if the whole sentence is in English?
I'm using Python, so libraries that are in Python would be preferable, but I can switch languages if needed, just thought that Python would be the best for this.
Upvotes: 28
Views: 68182
Reputation: 7987
For those looking for something simple without installing other libs I use this code for small things:
#!/usr/bin/env python3
from string import punctuation, ascii_lowercase, whitespace
def is_english(text):
only_chars = list(filter(lambda x: x not in punctuation + whitespace, text))
return all(x.lower() in ascii_lowercase for x in only_chars)
print(is_english("Hello")) # True
print(is_english("שלום")) # False
print(is_english("Hello שלום")) # False
Upvotes: 3
Reputation: 43
import enchant
def check(text):
text=text.split()
dictionary = enchant.Dict("en_US") #also available are en_GB, fr_FR, etc
for i in range(len(text)):
if(dictionary.check(text[i])==False):
o = "False"
break
else:
o = ("True")
return o
Upvotes: 0
Reputation: 151
This is what I've used some time ago. It works for texts longer than 3 words and with less than 3 non-recognized words. Of course, you can play with the settings, but for my use case (website scraping) those worked pretty well.
from enchant.checker import SpellChecker
max_error_count = 4
min_text_length = 3
def is_in_english(quote):
d = SpellChecker("en_US")
d.set_text(quote)
errors = [err.word for err in d]
return False if ((len(errors) > max_error_count) or len(quote.split()) < min_text_length) else True
print(is_in_english('“中文”'))
print(is_in_english('“Two things are infinite: the universe and human stupidity; and I\'m not sure about the universe.”'))
> False
> True
Upvotes: 4
Reputation: 3969
I arrived at your question with a very similar need. I appreciated Martin Thoma's answer. However, I found the most help from Rabash's answer part 7 HERE.
After experimenting to find what worked best for my needs, which were making sure text files were in English in 60,000+ text files, I found that fasttext was an excellent tool.
With a little work, I had a tool that worked very fast over many files. Below is the code with comments. I believe that you and others will be able to modify this code for your more specific needs.
class English_Check:
def __init__(self):
# Don't need to train a model to detect languages. A model exists
# that is very good. Let's use it.
pretrained_model_path = 'location of your lid.176.ftz file from fasttext'
self.model = fasttext.load_model(pretrained_model_path)
def predictionict_languages(self, text_file):
this_D = {}
with open(text_file, 'r') as f:
fla = f.readlines() # fla = file line array.
# fasttext doesn't like newline characters, but it can take
# an array of lines from a file. The two list comprehensions
# below, just clean up the lines in fla
fla = [line.rstrip('\n').strip(' ') for line in fla]
fla = [line for line in fla if len(line) > 0]
for line in fla: # Language predict each line of the file
language_tuple = self.model.predictionict(line)
# The next two lines simply get at the top language prediction
# string AND the confidence value for that prediction.
prediction = language_tuple[0][0].replace('__label__', '')
value = language_tuple[1][0]
# Each top language prediction for the lines in the file
# becomes a unique key for the this_D dictionary.
# Everytime that language is found, add the confidence
# score to the running tally for that language.
if prediction not in this_D.keys():
this_D[prediction] = 0
this_D[prediction] += value
self.this_D = this_D
def determine_if_file_is_english(self, text_file):
self.predictionict_languages(text_file)
# Find the max tallied confidence and the sum of all confidences.
max_value = max(self.this_D.values())
sum_of_values = sum(self.this_D.values())
# calculate a relative confidence of the max confidence to all
# confidence scores. Then find the key with the max confidence.
confidence = max_value / sum_of_values
max_key = [key for key in self.this_D.keys()
if self.this_D[key] == max_value][0]
# Only want to know if this is english or not.
return max_key == 'en'
Below is the application / instantiation and use of the above class for my needs.
file_list = # some tool to get my specific list of files to check for English
en_checker = English_Check()
for file in file_list:
check = en_checker.determine_if_file_is_english(file)
if not check:
print(file)
Upvotes: 5
Reputation: 136187
You might be interested in my paper The WiLI benchmark dataset for written language identification. I also benchmarked a couple of tools.
TL;DR:
You can install lidtk
and classify languages:
$ lidtk cld2 predict --text "this is some text written in English"
eng
$ lidtk cld2 predict --text "this is some more text written in English"
eng
$ lidtk cld2 predict --text "Ce n'est pas en anglais"
fra
Upvotes: 23
Reputation: 50190
If you want something lightweight, letter trigrams are a popular approach. Every language has a different "profile" of common and uncommon trigrams. You can google around for it, or code your own. Here's a sample implementation I came across, which uses "cosine similarity" as a measure of distance between the sample text and the reference data:
http://code.activestate.com/recipes/326576-language-detection-using-character-trigrams/
If you know the common non-English languages in your corpus, it's pretty easy to turn this into a yes/no test. If you don't, you need to anticipate sentences from languages for which you don't have trigram statistics. I would do some testing to see the normal range of similarity scores for single-sentence texts in your documents, and choose a suitable threshold for the English cosine score.
Upvotes: 2
Reputation: 1052
Use the enchant library
import enchant
dictionary = enchant.Dict("en_US") #also available are en_GB, fr_FR, etc
dictionary.check("Hello") # prints True
dictionary.check("Helo") #prints False
This example is taken directly from their website
Upvotes: 2
Reputation: 7368
There is a library called langdetect. It is ported from Google's language-detection available here:
https://pypi.python.org/pypi/langdetect
It supports 55 languages out of the box.
Upvotes: 30