Reputation:
I am creating a game using the HTML5 Canvas element, and as one of the visual effects I would like to create a glow (like a light) effect. Previously for glow effects I found solutions involving creating shadows of shapes, but these require a solid shape or object to cast the shadow. What I am looking for is a way to create something like an ambient light glow with a source location but no object at the position.
Something I have thought of was to define a centerpoint x
and y
and create hundreds of concentric circles, each 1px larger than the last and each with a very low opacity, so that together they create a solid center and a transparent edge. However, this is very computationally heavy and does not seem elegant at all, as the resulting glow looks awkward.
While this is all that I am asking of and I would be more than happy to stop here, bonus points if your solution is A) computationally light, B) modifiable to create a focused direction of light, or even better, C) if there was a way to create an "inverted" light system in which the entire screen is darkened by a mask and the shade is lifted where there is light.
I have done several searches, but none have turned up any particularly illuminating results.
Upvotes: 0
Views: 2095
Reputation: 137044
So I'm not quite sure what you want, but I hope the following snippet will help.
Instead of creating a lot of concentric circles, create one radialGradient.
Then you can combine this radial gradient with some blending, and even filters to modify the effect as you wish.
var img = new Image();
img.onload = init;
img.src = "https://dev.w3.org/SVG/tools/svgweb/samples/svg-files/car.svg";
var ctx = c.getContext('2d');
var gradCtx = c.cloneNode().getContext('2d');
var w, h;
var ratio;
function init() {
w = c.width = gradCtx.canvas.width = img.width;
h = c.height = gradCtx.canvas.height = img.height;
draw(w / 2, h / 2)
updateGradient();
c.onmousemove = throttle(handleMouseMove);
}
function updateGradient() {
var grad = gradCtx.createRadialGradient(w / 2, h / 2, w / 8, w / 2, h / 2, 0);
grad.addColorStop(0, 'transparent');
grad.addColorStop(1, 'white');
gradCtx.fillStyle = grad;
gradCtx.filter = "blur(5px)";
gradCtx.fillRect(0, 0, w, h);
}
function handleMouseMove(evt) {
var rect = c.getBoundingClientRect();
var x = evt.clientX - rect.left;
var y = evt.clientY - rect.top;
draw(x, y);
}
function draw(x, y) {
ctx.clearRect(0, 0, w, h);
ctx.globalCompositeOperation = 'source-over';
ctx.drawImage(img, 0, 0);
ctx.globalCompositeOperation = 'destination-in';
ctx.drawImage(gradCtx.canvas, x - w / 2, y - h / 2);
ctx.globalCompositeOperation = 'lighten';
ctx.fillRect(0, 0, w, h);
}
function throttle(callback) {
var active = false; // a simple flag
var evt; // to keep track of the last event
var handler = function() { // fired only when screen has refreshed
active = false; // release our flag
callback(evt);
}
return function handleEvent(e) { // the actual event handler
evt = e; // save our event at each call
if (!active) { // only if we weren't already doing it
active = true; // raise the flag
requestAnimationFrame(handler); // wait for next screen refresh
};
}
}
<canvas id="c"></canvas>
Upvotes: 5