Alex
Alex

Reputation: 4180

NumPy: Create a dict() by grouping values in a column by another column values

Suppose I have a 2-D NumPy array like the one below:

arr = numpy.array([[1,0], [1, 4.6], [2, 10.1], [2, 0], [2, 3.53]])
arr
Out[39]: 
array([[  1.  ,   0.  ],
       [  1.  ,   4.6 ],
       [  2.  ,  10.1 ],
       [  2.  ,   0.  ],
       [  2.  ,   3.53]])

What would be the fastest way to group the values in the 2nd column based on the values in the first column and create a dict out of it (the desired output is below)

{1: [0, 4.6], 2: [10.1, 0, 3.53]}

Currently I use a loop, and because the actual array I have is more than 1 million rows, and the first column has more than 5000 unique values, it's quite slow. I prefer not to use pandas.

Upvotes: 3

Views: 735

Answers (4)

kmario23
kmario23

Reputation: 61445

Assuming that your first column is in sorted order, this will work.

In [165]: d = {}

In [166]: uniq, idx, idxinv, counts = np.unique(arr[:, 0], return_index=True, return_inverse=True, return_counts=True)

In [167]: [d.update({arr[:, 0][el]: arr[:, 1][range(ix, counts[ix])]}) for ix, el in enumerate(idx)]
Out[167]: [None, None]

In [168]: d
Out[168]: {1.0: array([ 0. ,  4.6]), 2.0: array([  4.6,  10.1])}

Upvotes: 0

Divakar
Divakar

Reputation: 221654

Here's an approach -

def create_dict(arr):
    a = arr[arr[:,0].argsort()] # sort by col-0 if not already sorted
    s0 = np.r_[0,np.flatnonzero(a[1:,0] > a[:-1,0])+1,a.shape[0]]
    ids = a[s0[:-1],0]
    return {ids[i]:a[s0[i]:s0[i+1],1].tolist() for i in range(len(s0)-1)}

Sample run -

In [64]: arr
Out[64]: 
array([[  2.  ,   0.  ],
       [  1.  ,   4.6 ],
       [  2.  ,  10.1 ],
       [  4.  ,   0.5 ],
       [  1.  ,   0.  ],
       [  4.  ,   0.23],
       [  2.  ,   3.53]])

In [65]: create_dict(arr)
Out[65]: {1.0: [4.6, 0.0], 2.0: [0.0, 10.1, 3.53], 4.0: [0.5, 0.23]}

Runtime test

Other approaches -

# @Moinuddin Quadri's soln
def defaultdict_based(arr):
    my_list  = arr.tolist()
    my_dict = defaultdict(list)
    for key, value in my_list:
        my_dict[key].append(value)
    return my_dict

# @Psidom's soln
def numpy_split_based(arr):
    sort_arr = arr[arr[:, 0].argsort(), :]
    split_arr = np.split(sort_arr, np.where(np.diff(sort_arr[:,0]))[0] + 1) 
    return {s[0,0]: s[:,1].tolist() for s in split_arr}

Timings -

# Create sample random array with the first col having 1000000 elems
# with 5000 unique ones as stated in the question
In [102]: arr = np.random.randint(0,5000,(1000000,2))

In [103]: %timeit defaultdict_based(arr)
     ...: %timeit numpy_split_based(arr)
     ...: %timeit create_dict(arr)
     ...: 
1 loops, best of 3: 634 ms per loop
1 loops, best of 3: 270 ms per loop
1 loops, best of 3: 260 ms per loop

Bottlenecks for the approaches :

Seems like with defaultdict based approach the conversion to list with .tolist() is proving to be heavy (>50% of total runtime) -

In [104]: %timeit arr.tolist()
1 loops, best of 3: 372 ms per loop

For the other two approaches the sorting (if needed) at the start alongwith the splitting/loop-comprehension at the end are the time-consuming portions. The sorting step has the runtime (~50% of total runtime) -

In [106]: %timeit arr[arr[:,0].argsort()]
10 loops, best of 3: 140 ms per loop

Upvotes: 5

Moinuddin Quadri
Moinuddin Quadri

Reputation: 48100

You may do it without numpy via using collections.defaultdict. In-fact based on the example you provided, you don't even need the numpy array. Python's list are good enough for your requirement. Below is the example:

from collections import defaultdict
my_list = [[1,0], [1, 4.6], [2, 10.1], [2, 0], [2, 3.53]]

my_dict = defaultdict(list)
for key, value in my_list:
    my_dict[key].append(value)

    # if you want the values as float in the dict, use:
    #     my_dict[float(key)].append(float(value))

where final content hold by my_dict will be:

{1: [0, 4.6], 2: [10.1, 0, 3.53]}

Upvotes: 3

akuiper
akuiper

Reputation: 215087

You can use np.split:

# sort array by the first column if it isn't
sort_arr = arr[arr[:, 0].argsort(), :]
​
# split the array and construct the dictionary
split_arr = np.split(sort_arr, np.where(np.diff(sort_arr[:,0]))[0] + 1)

{s[0,0]: s[:,1].tolist() for s in split_arr}
# {1.0: [0.0, 4.6], 2.0: [10.1, 0.0, 3.53]}

Upvotes: 1

Related Questions