Reputation: 173
I have a dataframe with some columns containing data of type object because of some funky data entries (aka a . or whatnot).
I have been able to correct this by identifying the object columns and then doing this:
obj_cols = df.loc[:, df.dtypes == object]
conv_cols = obj_cols.convert_objects(convert_numeric='force')
This works fine and allows me to run the regression I need, but generates this error:
FutureWarning: convert_objects is deprecated.
Is there a better way to do this so as to avoid the error? I also tried constructing a lambda function but that didn't work.
Upvotes: 7
Views: 21455
Reputation: 175
If you have a sample data frame:
sales = [{'account': 'Jones LLC', 'Jan': 150, 'Feb': 'f', 'Mar': 140},
{'account': 'Alpha Co', 'Jan': 'e', 'Feb': 210, 'Mar': 215},
{'account': 'Blue Inc', 'Jan': 50, 'Feb': 90, 'Mar': 'g' }]
df = pd.DataFrame(sales)
and you want to get rid of the strings in the columns that should be numeric, you can do this with pd.to_numeric
cols = ['Jan', 'Feb', 'Mar']
df[cols] = df[cols].apply(pd.to_numeric, errors='coerce', axis=1)
your new data frame will have NaN in place of the 'wacky' data
Upvotes: 3
Reputation: 38425
Convert_objects is deprecated. Use this instead. You can add parameter errors='coerce' to convert bad non numeric values to NaN.
conv_cols = obj_cols.apply(pd.to_numeric, errors = 'coerce')
The function will be applied to the whole DataFrame. Columns that can be converted to a numeric type will be converted, while columns that cannot (e.g. they contain non-digit strings or dates) will be left alone.
Upvotes: 14