Reputation: 313
The goal of my program is to display the symbolic derivative of a mathematical expression. After creating a new tree that represents the derivative, it is likely that I will be left with redundant terms.
For example, the following tree is not simplified.
Example of binary expression tree
The tree 0 + 5 * (x * 5)
can be rewritten as 25 * x
My program uses many, many if
and else
blocks to reduce the tree by checking for constants multiplied by constants, etc. Then, it rearranges the sub tree accordingly.
Here is a tiny portion of my recursive function that simplifies the tree:
if(root.getVal().equals("*")) {
if(root.getLeftChild().getVal().equals("1")) {
return root.getRightChild();
}
else if(root.getRightChild().getVal().equals("1")) {
return root.getLeftChild();
}
else if(root.getLeftChild().getVal().equals("0")) {
return root.getLeftChild();
}
else if(root.getRightChild().getVal().equals("0")) {
return root.getRightChild();
}
else if(root.getLeftChild().getVal().equals("*")) {
if(root.getRightChild().getType().equals("constant")) {
if(root.getLeftChild().getLeftChild().getType().equals("constant")) { // Ex: (5*x)*6 ==> 30*x
int num1 = Integer.parseInt(root.getRightChild().getVal());
int num2 = Integer.parseInt(root.getLeftChild().getLeftChild().getVal());
OpNode mult = new OpNode("*");
mult.setLeftChild(new ConstNode(String.valueOf(num1 * num2)));
mult.setRightChild(root.getLeftChild().getRightChild());
return mult;
}
...
...
...
...
The function works great, other than the fact that I need to call it a few times to ensure the tree is fully reduced(incase a reduction opens up another reduction possibility). However, it is 200 lines long and growing, which leads me to believe there must be a much better way to do this.
Upvotes: 3
Views: 3961
Reputation: 4336
One typical approach to this problem is the visitor pattern. Any time you need to walk a recursive structure, applying logic at each node which depends on the "type" of the node, this pattern is a good tool to have handy.
For this specific problem, and specifically in Java, I'd start by representing your expression "abstract syntax tree" more directly as a type hierarchy.
I've put together a simple example, assuming your AST handles +, -, *, / as well as literal numbers and named variables. I've called my Visitor
a Folder
---we sometimes use this name for visitor-alikes which replace ("fold") subtrees. (Think: optimization or de-sugaring passes in compilers.)
The trick to handling the "I need to sometimes repeat simplification" is to do a depth-first traversal: all children get fully simplified before we simplify their parents.
Here's the example (disclaimer: I hate Java, so I don't promise this is the most "idiomatic" implementation in the language):
interface Folder {
// we could use the name "fold" for all of these, overloading on the
// argument type, and the dispatch code in each concrete Expression
// class would still do the right thing (selecting an overload using
// the type of "this") --- but this is a little easier to follow
Expression foldBinaryOperation(BinaryOperation expr);
Expression foldUnaryOperation(UnaryOperation expr);
Expression foldNumber(Number expr);
Expression foldVariable(Variable expr);
}
abstract class Expression {
abstract Expression fold(Folder f);
// logic to build a readable representation for testing
abstract String repr();
}
enum BinaryOperator {
PLUS,
MINUS,
MUL,
DIV,
}
enum UnaryOperator {
NEGATE,
}
class BinaryOperation extends Expression {
public BinaryOperation(BinaryOperator operator,
Expression left, Expression right)
{
this.operator = operator;
this.left = left;
this.right = right;
}
public BinaryOperator operator;
public Expression left;
public Expression right;
public Expression fold(Folder f) {
return f.foldBinaryOperation(this);
}
public String repr() {
// parens for clarity
String result = "(" + left.repr();
switch (operator) {
case PLUS:
result += " + ";
break;
case MINUS:
result += " - ";
break;
case MUL:
result += " * ";
break;
case DIV:
result += " / ";
break;
}
result += right.repr() + ")";
return result;
}
}
class UnaryOperation extends Expression {
public UnaryOperation(UnaryOperator operator, Expression operand)
{
this.operator = operator;
this.operand = operand;
}
public UnaryOperator operator;
public Expression operand;
public Expression fold(Folder f) {
return f.foldUnaryOperation(this);
}
public String repr() {
String result = "";
switch (operator) {
case NEGATE:
result = "-";
break;
}
result += operand.repr();
return result;
}
}
class Number extends Expression {
public Number(double value)
{
this.value = value;
}
public double value;
public Expression fold(Folder f) {
return f.foldNumber(this);
}
public String repr() {
return Double.toString(value);
}
}
class Variable extends Expression {
public Variable(String name)
{
this.name = name;
}
public String name;
public Expression fold(Folder f) {
return f.foldVariable(this);
}
public String repr() {
return name;
}
}
// a base class providing "standard" traversal logic (we could have
// made Folder abstract and put these there
class DefaultFolder implements Folder {
public Expression foldBinaryOperation(BinaryOperation expr) {
// recurse into both sides of the binary operation
return new BinaryOperation(
expr.operator, expr.left.fold(this), expr.right.fold(this));
}
public Expression foldUnaryOperation(UnaryOperation expr) {
// recurse into operand
return new UnaryOperation(expr.operator, expr.operand.fold(this));
}
public Expression foldNumber(Number expr) {
// numbers are "terminal": no more recursive structure to walk
return expr;
}
public Expression foldVariable(Variable expr) {
// another non-recursive expression
return expr;
}
}
class Simplifier extends DefaultFolder {
public Expression foldBinaryOperation(BinaryOperation expr) {
// we want to do a depth-first traversal, ensuring that all
// sub-expressions are simplified before their parents...
// ... so begin by invoking the superclass "default"
// traversal logic.
BinaryOperation folded_expr =
// this cast is safe because we know the default fold
// logic never changes the type of the top-level expression
(BinaryOperation)super.foldBinaryOperation(expr);
// now apply our "shallow" simplification logic on the result
switch (folded_expr.operator) {
case PLUS:
// x + 0 => x
if (folded_expr.right instanceof Number
&& ((Number)(folded_expr.right)).value == 0)
return folded_expr.left;
// 0 + x => x
if (folded_expr.left instanceof Number
&& ((Number)(folded_expr.left)).value == 0)
return folded_expr.right;
break;
case MINUS:
// x - 0 => x
if (folded_expr.right instanceof Number
&& ((Number)(folded_expr.right)).value == 0)
return folded_expr.left;
// 0 - x => -x
if (folded_expr.left instanceof Number
&& ((Number)(folded_expr.left)).value == 0) {
// a weird case: we need to construct a UnaryOperator
// representing -right, then simplify it
UnaryOperation minus_right = new UnaryOperation(
UnaryOperator.NEGATE, folded_expr.right);
return foldUnaryOperation(minus_right);
}
break;
case MUL:
// 1 * x => x
if (folded_expr.left instanceof Number
&& ((Number)(folded_expr.left)).value == 1)
return folded_expr.right;
case DIV:
// x * 1 => x
// x / 1 => x
if (folded_expr.right instanceof Number
&& ((Number)(folded_expr.right)).value == 1)
return folded_expr.left;
break;
}
// no rules applied
return folded_expr;
}
public Expression foldUnaryOperation(UnaryOperation expr) {
// as before, go depth-first:
UnaryOperation folded_expr =
// see note in foldBinaryOperation about safety here
(UnaryOperation)super.foldUnaryOperation(expr);
switch (folded_expr.operator) {
case NEGATE:
// --x => x
if (folded_expr.operand instanceof UnaryOperation
&& ((UnaryOperation)folded_expr).operator ==
UnaryOperator.NEGATE)
return ((UnaryOperation)folded_expr.operand).operand;
// -(number) => -number
if (folded_expr.operand instanceof Number)
return new Number(-((Number)(folded_expr.operand)).value);
break;
}
// no rules applied
return folded_expr;
}
// we don't need to implement the other two; the inherited defaults are fine
}
public class Simplify {
public static void main(String[] args) {
Simplifier simplifier = new Simplifier();
Expression[] exprs = new Expression[] {
new BinaryOperation(
BinaryOperator.PLUS,
new Number(0.0),
new Variable("x")
),
new BinaryOperation(
BinaryOperator.PLUS,
new Number(17.3),
new UnaryOperation(
UnaryOperator.NEGATE,
new UnaryOperation(
UnaryOperator.NEGATE,
new BinaryOperation(
BinaryOperator.DIV,
new Number(0.0),
new Number(1.0)
)
)
)
),
};
for (Expression expr: exprs) {
System.out.println("Unsimplified: " + expr.repr());
Expression simplified = expr.fold(simplifier);
System.out.println("Simplified: " + simplified.repr());
}
}
}
And the output:
> java Simplify
Unsimplified: (0.0 + x)
Simplified: x
Unsimplified: (17.3 + --(0.0 / 1.0))
Simplified: 17.3
Upvotes: 2