Reputation: 741
Using Tensorflow 1.0.1 it's fine to read optimized graph and quantized graph in android using TensorFlowImageClassifier.create method, such as:
classifier = TensorFlowImageClassifier.create(
c.getAssets(),
MODEL_FILE,
LABEL_FILE,
IMAGE_SIZE,
IMAGE_MEAN,
IMAGE_STD,
INPUT_NAME,
OUTPUT_NAME);
But according to the Peter Warden's Blog(https://petewarden.com/2016/09/27/tensorflow-for-mobile-poets/), it's recommended to use memory mapped graph in mobile to avoid memory related crashes.
I built memmapped graph using
bazel-bin/tensorflow/contrib/util/convert_graphdef_memmapped_format \
--in_graph=/tf_files/rounded_graph.pb \
--out_graph=/tf_files/mmapped_graph.pb
and it created fine, but when I tried to load the file with TensorFlowImageClassifier.create(...) it says the file is not valid graph file.
In iOS, it's ok to load the file with
LoadMemoryMappedModel(
model_file_name, model_file_type, &tf_session, &tf_memmapped_env);
for it has a method for read memory mapped graph.
So, I guess there's a similar function in android, but I couldn't find it.
Could someone guide me how to load memory mapped graph in android ?
Upvotes: 2
Views: 1324
Reputation: 2878
Since the file from the memmapped tool is no longer a standard GraphDef protobuf, you need to make some changes to the loading code. You can see an example of this in the iOS Camera demo app, the LoadMemoryMappedModel()
function:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/ios_examples/camera/tensorflow_utils.mm#L159
The same code (with the Objective C calls for getting the filenames substituted) can be used on other platforms too. Because we’re using memory mapping, we need to start by creating a special TensorFlow environment object that’s set up with the file we’ll be using:
std::unique_ptr<tensorflow::MemmappedEnv> memmapped_env;
memmapped_env->reset(
new tensorflow::MemmappedEnv(tensorflow::Env::Default()));
tensorflow::Status mmap_status =
(memmapped_env->get())->InitializeFromFile(file_path);
You then need to pass in this environment to subsequent calls, like this one for loading the graph.
tensorflow::GraphDef tensorflow_graph;
tensorflow::Status load_graph_status = ReadBinaryProto(
memmapped_env->get(),
tensorflow::MemmappedFileSystem::kMemmappedPackageDefaultGraphDef,
&tensorflow_graph);
You also need to create the session with a pointer to the environment you’ve created:
tensorflow::SessionOptions options;
options.config.mutable_graph_options()
->mutable_optimizer_options()
->set_opt_level(::tensorflow::OptimizerOptions::L0);
options.env = memmapped_env->get();
tensorflow::Session* session_pointer = nullptr;
tensorflow::Status session_status =
tensorflow::NewSession(options, &session_pointer);
One thing to notice here is that we’re also disabling automatic optimizations, since in some cases these will fold constant sub-trees, and so create copies of tensor values that we don’t want and use up more RAM. This setup also means it's hard to use a model stored as an APK asset in Android, since those are compressed and don't have normal filenames. Instead you'll need to copy your file out of an APK onto a normal filesytem location.
Once you’ve gone through these steps, you can use the session and graph as normal, and you should see a reduction in loading time and memory usage.
Upvotes: 3