Reputation: 21
I am trying to code a C++ implementation of a Bloom filter using the MurmurHash3 hash function. My implementation is based on this site: http://blog.michaelschmatz.com/2016/04/11/how-to-write-a-bloom-filter-cpp/
Somehow, in my BloomFilter header file, the hash function throws an incomplete type error, also, when I use the hash function inside of the add function, I get a "hash is ambigious error".
What can I do to fix this? I am somewhat new to C++ so I'm not exactly sure if I am using the interface/implementation of a structure correctly.
I am also using a main function that will include this file and run some tests to analyze the false positive rate, number of bits, filter size etc . . .
#ifndef BLOOM_FILTER_H
#define BLOOM_FILTER_H
#include "MurmurHash3.h"
#include <vector>
//basic structure of a bloom filter object
struct BloomFilter {
BloomFilter(uint64_t size, uint8_t numHashes);
void add(const uint8_t *data, std::size_t len);
bool possiblyContains(const uint8_t *data, std::size_t len) const;
private:
uint8_t m_numHashes;
std::vector<bool> m_bits;
};
//Bloom filter constructor
BloomFilter::BloomFilter(uint64_t size, uint8_t numHashes)
: m_bits(size),
m_numHashes(numHashes) {}
//Hash array created using the MurmurHash3 code
std::array<uint64_t, 2> hash(const uint8_t *data, std::size_t len)
{
std::array<uint64_t, 2> hashValue;
MurmurHash3_x64_128(data, len, 0, hashValue.data());
return hashValue;
}
//Hash array created using the MurmurHash3 code
inline uint64_t nthHash(uint8_t n,
uint64_t hashA,
uint64_t hashB,
uint64_t filterSize) {
return (hashA + n * hashB) % filterSize;
}
//Adds an element to the array
void BloomFilter::add(const uint8_t *data, std::size_t len) {
auto hashValues = hash(data, len);
for (int n = 0; n < m_numHashes; n++)
{
m_bits[nthHash(n, hashValues[0], hashValues[1], m_bits.size())] = true;
}
}
//Returns true or false based on a probabilistic assesment of the array using MurmurHash3
bool BloomFilter::possiblyContains(const uint8_t *data, std::size_t len) const {
auto hashValues = hash(data, len);
for (int n = 0; n < m_numHashes; n++)
{
if (!m_bits[nthHash(n, hashValues[0], hashValues[1], m_bits.size())])
{
return false;
}
}
return true;
}
#endif
Upvotes: 1
Views: 2417
Reputation: 16843
If your MurmurHash3_x64_128 returns two 64-bit numbers as a hash value, I'd treat that as 4 distinct uint32_t hashes as long as you don't need more than 4 billion bits in your bit string. Most likely you don't need more than 2-3 hashses, but that depends on your use case. To figure out how many hashes you need you can check "How many hash functions does my bloom filter need?".
Using MurmurHash3_x64_128 I'd do it this way (if I were to treat it as 4 x uint32_t hashses):
void BloomFilter::add(const uint8_t *data, std::size_t len) {
auto hashValues = hash(data, len);
uint32_t* hx = reinterpret_cast<uint32_t*>(&hashValues[0]);
assert(m_numHashes <= 4);
for (int n = 0; n < m_numHashes; n++)
m_bits[hx[n] % m_bits.size()] = true;
}
Your code has some issues with types conversion that's why it didn't compile:
#include <array>
myhash
) and make it static.Here's version of your code with these correction and this should work:
#ifndef BLOOM_FILTER_H
#define BLOOM_FILTER_H
#include "MurmurHash3.h"
#include <vector>
#include <array>
//basic structure of a bloom filter object
struct BloomFilter {
BloomFilter(size_t size, uint8_t numHashes);
void add(const uint8_t *data, std::size_t len);
bool possiblyContains(const uint8_t *data, std::size_t len) const;
private:
uint8_t m_numHashes;
std::vector<bool> m_bits;
};
//Bloom filter constructor
BloomFilter::BloomFilter(size_t size, uint8_t numHashes)
: m_bits(size),
m_numHashes(numHashes) {}
//Hash array created using the MurmurHash3 code
static std::array<uint64_t, 2> myhash(const uint8_t *data, std::size_t len)
{
std::array<uint64_t, 2> hashValue;
MurmurHash3_x64_128(data, len, 0, hashValue.data());
return hashValue;
}
//Hash array created using the MurmurHash3 code
inline size_t nthHash(int n,
uint64_t hashA,
uint64_t hashB,
size_t filterSize) {
return (hashA + n * hashB) % filterSize; // <- not sure if that is OK, perhaps it is.
}
//Adds an element to the array
void BloomFilter::add(const uint8_t *data, std::size_t len) {
auto hashValues = myhash(data, len);
for (int n = 0; n < m_numHashes; n++)
{
m_bits[nthHash(n, hashValues[0], hashValues[1], m_bits.size())] = true;
}
}
//Returns true or false based on a probabilistic assesment of the array using MurmurHash3
bool BloomFilter::possiblyContains(const uint8_t *data, std::size_t len) const {
auto hashValues = myhash(data, len);
for (int n = 0; n < m_numHashes; n++)
{
if (!m_bits[nthHash(n, hashValues[0], hashValues[1], m_bits.size())])
{
return false;
}
}
return true;
}
#endif
If you are just starting with c++, at first start with basic example, try to use std::hash maybe? Create working implementation, then extend it with optional hash function parameter. If you need your BloomFilter to be fast I'd probably stay away from vector<bool>
and use array of unsigned ints instead.
Basic impl could something like this, provided that your have MurmurHash3
implemented:
uint32_t MurmurHash3(const char *str, size_t len);
class BloomFilter
{
public:
BloomFilter(int count_elements = 0, double bits_per_element = 10)
{
mem = NULL;
init(count_elements, bits_per_element);
}
~BloomFilter()
{
delete[] mem;
}
void init(int count_elements, double bits_per_element)
{
assert(!mem);
sz = (uint32_t)(count_elements*bits_per_element + 0.5);
mem = new uint8_t[sz / 8 + 8];
}
void add(const std::string &str)
{
add(str.data(), str.size());
}
void add(const char *str, size_t len)
{
if (len <= 0)
return;
add(MurmurHash3(str, len));
}
bool test(const std::string &str)
{
return test(str.data(), str.size());
}
bool test(const char *str, size_t len)
{
return test_hash(MurmurHash3(str, len));
}
bool test_hash(uint32_t h)
{
h %= sz;
if (0 != (mem[h / 8] & (1u << (h % 8))))
return true;
return false;
}
int mem_size() const
{
return (sz + 7) / 8;
}
private:
void add(uint32_t h)
{
h %= sz;
mem[h / 8] |= (1u << (h % 8));
}
public:
uint32_t sz;
uint8_t *mem;
};
Upvotes: 4