Reputation: 1053
Let's be honest, this is a hw question.
The question in its entirety:
Implement duplicate removal algorithm in a one-dimensional array using C++/Java in O(n) time complexity with no extra space. For example, if the input array is {3,5,5,3,7,8,5,8,9,9} then the output should be {3,5,7,8,9}.
I have thought about it for quite a while and haven't been able to solve it yet.
My thoughts:
I could remove duplicates in O(n) if the array was sorted. But the fastest sorting algorithm I know has O(n*log(n)) complexity.
One algorithm that sorts in O(n) is bin or bucket sort. The problem here is that it cannot be implemented without using extra space.
I wonder if it is possible at all.
I have researched a bit and have found nothing new.
Thanks for any help.
P.S.: I would have given it more time if it weren't for the exam tomorrow.
Upvotes: 4
Views: 924
Reputation: 5903
This is indeed possible, just use in-place radix sort.
It runs for O(kn)
where k
is constant for any standard numeric data type, and requires O(1)
extra space.
Here`s the code:
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
/// in-place 32-bit recursive radix sort
void I32R(int32_t *data, uint32_t size, uint32_t nbit) {
uint32_t dbgn = (uint32_t)-1, dend = size;
while (++dbgn < dend)
if (data[dbgn] & nbit)
while (dbgn < --dend)
if (~data[dend] & nbit) {
data[dbgn] ^= data[dend];
data[dend] ^= data[dbgn];
data[dbgn] ^= data[dend];
break;
}
if ((nbit >>= 1) && (dend > 1))
I32R(data, dend, nbit);
if (nbit && (size - dend > 1))
I32R(data + dend, size - dend, nbit);
}
/// O_t(n) / O_s(1) duplicate remover
int32_t dups(int32_t *data, uint32_t size) {
int32_t iter, *uniq = data;
if (size < 2)
return size;
for (iter = 0; iter < size; iter++)
data[iter] ^= (1 << 31);
I32R(data, size, 1 << 31);
data[0] ^= (1 << 31);
for (iter = 1; iter < size; iter++)
if (*uniq != (data[iter] ^= (1 << 31)))
*++uniq = data[iter];
return uniq - data + 1;
}
void parr(int32_t *data, uint32_t size) {
for (; size; size--)
printf("%4d%s", *data++, (size == 1)? "\n\n" : ", ");
}
int main() {
int32_t iter, size, *data;
data = malloc((size = 256) * sizeof(*data));
for (iter = 0; iter < size; iter++)
data[iter] = (int8_t)rand() & -3;
parr(data, size);
parr(data, dups(data, size));
free(data);
return 0;
}
N.B.#1: inverting the sign bit before sorting is necessary for positive numbers to become greater than negatives, as radix sort only operates on unsigned values.
N.B.#2: this is just a rough illustration, never really tested.
N.B.#3: oh wow, this is actually faster than qsort()
!
N.B.#4: and now there`s a non-recursive version of the sorting function; the usage is pretty much the same, save for the lack of nbit
:
void I32NR(int32_t *data, uint32_t size) {
int32_t mask, head;
struct {
uint32_t init, size, nbit, edge;
} heap[32];
heap[0].nbit = 32;
heap[0].size = size;
heap[0].init = head = 0;
do {
size = heap[head].init - 1;
mask = 1 << ((heap[head].nbit & 0x7F) - 1);
heap[head].edge = heap[head].size;
while (++size < heap[head].edge)
if (data[size] & mask)
while (size < --heap[head].edge)
if (~data[heap[head].edge] & mask) {
data[size] ^= data[heap[head].edge];
data[heap[head].edge] ^= data[size];
data[size] ^= data[heap[head].edge];
break;
}
heap[head].nbit = ((heap[head].nbit & 0x7F) - 1)
| (heap[head].nbit & 0x80);
if ((heap[head].nbit & 0x7F) && (heap[head].edge > 1)) {
heap[head + 1] = heap[head];
heap[head + 1].size = heap[head].edge;
heap[++head].nbit |= 0x80;
continue;
}
do {
if ((heap[head].nbit & 0x7F)
&& (heap[head].size - heap[head].edge > 1)) {
heap[head + 1] = heap[head];
heap[head + 1].init = heap[head].edge;
heap[++head].nbit &= 0x7F;
break;
}
while ((head >= 0) && !(heap[head--].nbit & 0x80));
} while (head >= 0);
} while (head >= 0);
}
Upvotes: 3
Reputation: 142
Suppose ar[i]=j
, check whether ar[j]
is negative or not, if negative remove ar[i]
else replace element ar[j]
with -ar[j]
.
NOTE : This will work only if all the elements are positive and elements lies within 0<=elements<array_size
.
for(int i = 0; i < ar.length; i++) {
int elem1 = ar[i];
int elem2 = ar[Math.abs(elem1)];
if(elem2 >= 0) {
ar[Math.abs(elem1)] = -elem2;
}
else {
//elem1 already exists in an array. remove elem1 or copy distinct elements to another array
}
}
Upvotes: 1