Reputation: 539
I've been trying to print out a Pandas dataframe to html and have specific entire rows highlighted if the value of one specific column's value for that row is over a threshold. I've looked through the Pandas Styler Slicing and tried to vary the highlight_max function for such a use, but seem to be failing miserably; if I try, say, to replace the is_max with a check for whether a given row's value is above said threshold (e.g., something like
is_x = df['column_name'] >= threshold
), it isn't apparent how to properly pass such a thing or what to return.
I've also tried to simply define it elsewhere using df.loc, but that hasn't worked too well either.
Another concern also came up: If I drop that column (currently the criterion) afterwards, will the styling still hold? I am wondering if a df.loc would prevent such a thing from being a problem.
Upvotes: 38
Views: 79950
Reputation: 30050
Assume you have the following dataframe and you want to highlight the rows where id
is greater than 3
to red
id char date
0 0 s 2022-01-01
1 1 t 2022-02-01
2 2 y 2022-03-01
3 3 l 2022-04-01
4 4 e 2022-05-01
5 5 r 2022-06-01
You can try Styler.set_properties
with pandas.IndexSlice
# Subset your original dataframe with condition
df_ = df[df['id'].gt(3)]
# Pass the subset dataframe index and column to pd.IndexSlice
slice_ = pd.IndexSlice[df_.index, df_.columns]
s = df.style.set_properties(**{'background-color': 'red'}, subset=slice_)
s.to_html('test.html')
You can also try Styler.apply
with axis=None
which passes the whole dataframe.
def styler(df):
color = 'background-color: {}'.format
mask = pd.concat([df['id'].gt(3)] * df.shape[1], axis=1)
style = np.where(mask, color('red'), color('green'))
return style
s = df.style.apply(styler, axis=None)
Upvotes: 11
Reputation: 391
Here is a simpler approach:
Assume you have a 100 x 10 dataframe, df. Also assume you want to highlight all the rows corresponding to a column, say "duration", greater than 5.
You first need to define a function that highlights the cells. The real trick is that you need to return a row, not a single cell. For example:
def highlight(s):
if s.duration > 5:
return ['background-color: yellow'] * len(s)
else:
return ['background-color: white'] * len(s)
**Note that the return part should be a list of 10 (corresponding to the number of columns). This is the key part.
Now you can apply this to the dataframe style as:
df.style.apply(highlight, axis=1)
Upvotes: 39
Reputation: 153510
This solution allows for you to pass a column label or a list of column labels to highlight the entire row if that value in the column(s) exceeds the threshold.
import pandas as pd
import numpy as np
np.random.seed(24)
df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
df = pd.concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))],
axis=1)
df.iloc[0, 2] = np.nan
def highlight_greaterthan(s, threshold, column):
is_max = pd.Series(data=False, index=s.index)
is_max[column] = s.loc[column] >= threshold
return ['background-color: yellow' if is_max.any() else '' for v in is_max]
df.style.apply(highlight_greaterthan, threshold=1.0, column=['C', 'B'], axis=1)
Output:
Or for one column
df.style.apply(highlight_greaterthan, threshold=1.0, column='E', axis=1)
Upvotes: 56