Reputation: 7517
I am trying to get more precise (up to 6 decimal places) estimates of x[1]
and x[2]
in my function called GGG
.
Using optim
, I get some precision up to 3 decimal places, but am wondering how I can improve precision up to at least 6 decimal places?
Can optimize
and nlm
be used for this goal?
GGG = function(Low, High, p1, p2) {
f <- function(x) {
y <- c(Low, High) - qcauchy(c(p1, p2), location=x[1], scale=x[2])
}
## SOLVE:
AA <- optim(c(1,1), function(x) sum(f(x)^2) )
## return parameters:
parms = unname(AA$par)
return(parms) ## Correct but up to 3 decimal places
}
## TEST:
AAA <- GGG (Low = -3, High = 3, p1 = .025, p2 = .975)
## CHECK:
q <- qcauchy( c(.025, .975), AAA[1], AAA[2] ) # What comes out of "q" MUST match "Low" and
# "High" up to 6 decimal places
Upvotes: 1
Views: 822
Reputation: 9705
The optim function has a tolerance control parameter. Replace your optim function with this:
AA <- optim(c(1,1), function(x) sum(f(x)^2), control=list(reltol=(.Machine$double.eps)))
Returns:
> q
[1] -3 3
> AAA
[1] 5.956798e-08 2.361051e-01
Upvotes: 2