Dev
Dev

Reputation: 13753

Dataframe from List<String> in Java

I have a List<String> data. Something like:

[[dev, engg, 10000], [karthik, engg, 20000]..]

I know schema for this data.

name (String)
degree (String)
salary (Integer)

I tried:

JavaRDD<String> data = new JavaSparkContext(sc).parallelize(datas);
DataFrame df = sqlContext.read().json(data);
df.printSchema();
df.show(false);

Output:

root
 |-- _corrupt_record: string (nullable = true)


+-----------------------------+
|_corrupt_record              |
+-----------------------------+
|[dev, engg, 10000]           |
|[karthik, engg, 20000]       |
+-----------------------------+

Because List<String> is not a proper JSON.

Do I need to create a proper JSON or is there any other way to do this?

Upvotes: 5

Views: 25026

Answers (3)

Vikas Singh
Vikas Singh

Reputation: 419

DataFrame createNGramDataFrame(JavaRDD<String> lines) {
 JavaRDD<Row> rows = lines.map(new Function<String, Row>(){
    private static final long serialVersionUID = -4332903997027358601L;

    @Override
    public Row call(String line) throws Exception {
        return RowFactory.create(line.split("\\s+"));
    }
 });
 StructType schema = new StructType(new StructField[] {
        new StructField("words",
                DataTypes.createArrayType(DataTypes.StringType), false,
                Metadata.empty()) });
 DataFrame wordDF = new SQLContext(jsc).createDataFrame(rows, schema);
 // build a bigram language model
 NGram transformer = new NGram().setInputCol("words")
        .setOutputCol("ngrams").setN(2);
 DataFrame ngramDF = transformer.transform(wordDF);
 ngramDF.show(10, false);
 return ngramDF;
}

Upvotes: 2

abaghel
abaghel

Reputation: 15297

You can create DataFrame from List<String> and then use selectExpr and split to get desired DataFrame.

public class SparkSample{
public static void main(String[] args) {
    SparkConf conf = new SparkConf().setAppName("SparkSample").setMaster("local[*]");
    JavaSparkContext jsc = new JavaSparkContext(conf);
    SQLContext sqc = new SQLContext(jsc);
    // sample data
    List<String> data = new ArrayList<String>();
    data.add("dev, engg, 10000");
    data.add("karthik, engg, 20000");
    // DataFrame
    DataFrame df = sqc.createDataset(data, Encoders.STRING()).toDF();
    df.printSchema();
    df.show();
    // Convert
    DataFrame df1 = df.selectExpr("split(value, ',')[0] as name", "split(value, ',')[1] as degree","split(value, ',')[2] as salary");
    df1.printSchema();
    df1.show(); 
   }
}

You will get below output.

root
 |-- value: string (nullable = true)

+--------------------+
|               value|
+--------------------+
|    dev, engg, 10000|
|karthik, engg, 20000|
+--------------------+

root
 |-- name: string (nullable = true)
 |-- degree: string (nullable = true)
 |-- salary: string (nullable = true)

+-------+------+------+
|   name|degree|salary|
+-------+------+------+
|    dev|  engg| 10000|
|karthik|  engg| 20000|
+-------+------+------+

The sample data you have provided has empty spaces. If you want to remove space and have the salary type as "integer" then you can use trim and cast function like below.

df1 = df1.select(trim(col("name")).as("name"),trim(col("degree")).‌​as("degree"),trim(co‌​l("salary")).cast("i‌​nteger").as("salary"‌​)); 

Upvotes: 15

pasha701
pasha701

Reputation: 7207

Task can be completed without JSON, on Scala:

val data = List("dev, engg, 10000", "karthik, engg, 20000")
val intialRdd = sparkContext.parallelize(data)
val splittedRDD = intialRdd.map(current => {
  val array = current.split(",")
  (array(0), array(1), array(2))
})
import sqlContext.implicits._
val dataframe = splittedRDD.toDF("name", "degree", "salary")
dataframe.show()

Output is:

+-------+------+------+
|   name|degree|salary|
+-------+------+------+
|    dev|  engg| 10000|
|karthik|  engg| 20000|
+-------+------+------+

Note: (array(0), array(1), array(2)) is a Scala Tuple

Upvotes: 1

Related Questions