Reputation: 2085
I would like to extract the following table using rvest from http://finra-markets.morningstar.com/BondCenter/TRACEMarketAggregateStats.jsp (for any date):
I tried the following but failed to produce any result:
library(rvest)
url <- "http://finra-markets.morningstar.com/BondCenter/TRACEMarketAggregateStats.jsp"
htmlSession <-html_session(url) ## create session
goForm <- html_form(htmlSession)[[2]] ## pull form from session
#filledGoForm <- set_values(goForm, value="04/26/2017") # This does not work
filledGoForm <- goForm
filledGoForm$fields[[1]]$value <- "04/26/2017"
htmlSession <- submit_form(htmlSession, filledGoForm)
> htmlSession <- submit_form(htmlSession, filledGoForm)
Submitting with ''
Warning message:
In request_POST(session, url = url, body = request$values, encode = request$encode, :
Not Found (HTTP 404).
Any hints on how to do this highly appreciated.
Upvotes: 2
Views: 328
Reputation: 78792
That site uses many XHR requests to populate the tables. And, it establishes a server session with a hidden POST
request which won't be replicated with html_session()
.
We'll need to add in httr
for some help:
library(httr)
library(rvest)
The first thing we need to do is to just hit the site to get an initial qs_wid
cookie into the implicit cookie jar curl
/httr
/rvest
share:
init <- GET("http://finra-markets.morningstar.com/MarketData/Default.jsp")
Next, we need to mimic the hidden "login" that the web page does:
nxt <- POST(url = "http://finra-markets.morningstar.com/finralogin.jsp",
body = list(redirectPage = "/BondCenter/TRACEMarketAggregateStats.jsp"),
encode = "form")
That creates a session on the server back-end and places a few other cookies in our cookie jar.
Finally:
GET(
url = "http://finra-markets.morningstar.com/transferPage.jsp",
query = list(
`path`="http://muni-internal.morningstar.com/public/MarketBreadth/C",
`date`="04/24/2017",
`_`=as.numeric(Sys.time())
)
) -> res
makes the request. You can make a function out of all three steps (together) and parameterize that last GET
.
Unfortunately, that returns a very broken HTML <table>
that html_table()
can't translate into a data frame automagically for you, but that shouldn't stop you:
content(res) %>%
html_nodes("td") %>%
html_text() %>%
matrix(ncol=4, byrow=TRUE) %>%
as_data_frame() %>%
mutate_all(as.numeric) %>%
rename(all_issues=V1, investment_grade=V2, high_yield=V3, convertible=V4) %>%
mutate(category = c("total_issues_traded", "advances", "declines", "unchanged", "high_52", "low_52", "dollar_volume"))
## # A tibble: 7 × 5
## all_issues investment_grade high_yield convertible category
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 7983 5602 2194 187 total_issues_traded
## 2 3025 1798 1100 127 advances
## 3 4448 3575 824 49 declines
## 4 124 42 75 7 unchanged
## 5 257 66 175 16 high_52
## 6 139 105 33 1 low_52
## 7 22601 16143 5742 715 dollar_volume
To get the other data tables, go to the Developer Tools option in your browser (switch to one that has it if yours doesn't … you're likely on Windows given that you're doing finance things and IE/Edge aren't very good browsers for introspection) and refresh the page to see the other requests that get made.
Upvotes: 2