Reputation: 135
For example, I have a list which contains some Lecture instances, each lecture has a certain number of students attending this lecture and another list which contains some Classroom instances, each classroom has a maximum capacity.
Now I intend to assign each lecture in lecture list with a classroom in classroom list, all lectures in lecture class should have a classroom, then create a map to store this possibility. And I want to return all these possible matches in the form of a set. For example:
Classroom List: [Classroom1(50),Classroom2(70),Classroom3(80)]
Lecture list: [Lecture1(50), Lecture2(70), Lecture3(50)]
Then we have 3 possible maps, which are:
{lecture1:classroom1, lecture2:classroom2, lecture3:classroom3} and
{lecture1:classroom1, lecture2:classroom3, lecture3:classroom2} and
{lecture1:classroom2, lecture2:classroom3, lecture3:classroom1}
After that, all possible maps should be stored in a set.
I am new to programming and has not learned algorithm yet, maybe that's why I'm so struggled on this, I'd be grateful if someone could help me solve this problem.
Upvotes: 3
Views: 684
Reputation: 3508
What you seem to be after is something known as the cartesian product.
See https://en.wikipedia.org/wiki/Cartesian_product
You can do this with Java 8 streams
All permutations
// Just substitute the types and values for Lecture and Classroom instances
// I'm not going to do this for you
final List<String> first = Arrays.asList("foo","bar","baz");
final List<String> second = Arrays.asList("spam","ham","eggs");
final Set<Map.Entry<String,String>> objects =
first
.stream()
.flatMap(f ->
second
.stream()
.map(s -> new AbstractMap.SimpleEntry<>(f, s)))
.collect(Collectors.toSet());
Your 'objects' set is going to contain Abstract entry maps which hold your combinations.
Set[
Map{foo : spam}
Map{foo : ham}
Map{foo : eggs}
Map{bar : spam}
Map{bar : ham}
Map{bar : eggs}
Map{baz : spam}
Map{baz : ham}
Map{baz : eggs}
]
Groups of combinations
If you actually want 3 items in your set, you can do an intermediate collect on the second stream to collect into a data structure of your choice. Below shows that for a list, as I've already shown use of Collectors.toSet()
final Set<List<AbstractMap.SimpleEntry<String,String>>> objects =
first
.stream()
.map(f ->
second
.stream()
.map(s -> new AbstractMap.SimpleEntry<>(f, s))
.collect(Collectors.toList()))
.collect(Collectors.toSet());
Your 'objects' set is going to contain a list of Abstract entry maps which hold your combinations.
Set[
List(
Map{foo : spam}, Map{foo : ham}, Map{foo : eggs}
),
List(
Map{bar : spam}, Map{bar : ham}, Map{bar : eggs}
),
List(
Map{baz : spam}, Map{baz : ham}, Map{baz : eggs}
)
]
This illustrates a simple cartesian product algorithm using Java 8 in a single functional statement. Should you wish to add any clauses or exclusions, you can use filter
or any of the other higher order functions to manipulate the stream.
Upvotes: 4
Reputation: 449
Here is an example with sorted data collections:
public Set<Map<Lecture, ClassRoom>> allocateRooms(List<Lecture> lectures, List<ClassRoom> classRooms){
List<ClassRoom> sortedClassRooms = classRooms
.stream().sorted(Comparator.comparingInt(a -> a.getId())).collect(Collectors.toList());
List<Lecture> sortedLectures = lectures
.stream().sorted(Comparator.comparingInt(a -> a.getId())).collect(Collectors.toList());
Set<Map<Lecture, ClassRoom>> returnSet = new LinkedHashSet<>();
for(Lecture l: sortedLectures){
for (ClassRoom c: sortedClassRooms){
Map<Lecture, ClassRoom> n = new HashMap<>();
n.put(l,c);
}
}
return returnSet;
}
Upvotes: 0
Reputation: 287
So i got sucked in to this one and wrote a working solution
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
class ClassMatcher {
//The set of all possible matchings.
static ArrayList<ArrayList<Pair>> set = new ArrayList<ArrayList<Pair>>();
// The current matching being built
static ArrayList<Pair> cur = new ArrayList<Pair>();
public static void main(String[] args) {
Lecture[] l = { new Lecture(50, 1), new Lecture(70, 2), new Lecture(50, 3)};
ArrayList<Classroom> c = new ArrayList<>(Arrays.asList(
new Classroom(50, 1), new Classroom(70, 2),
new Classroom(100, 3)));
for (int i = 0; i < l.length; i++) {
//Fill with dummy values
cur.add(new Pair(new Classroom(-1, -1), new Lecture(-1, -1)));
}
// Sort the arrays to save work in rec()
Arrays.sort(l);
//Sort classrooms in descending order
Collections.sort(c, new Comparator<Classroom>() {
@Override
public int compare(Classroom o1, Classroom o2) {
return o1.compareTo(o2) * -1;
}
});
recursive(l, c, 0);
// Print all the sets
for (int i = 0; i < set.size(); i++) {
System.out.print("{");
for (int j = 0; j < set.get(i).size(); j++) {
System.out.print("Lecture " + set.get(i).get(j).l + ": "
+ "Classroom " + set.get(i).get(j).c);
if (j < set.get(i).size() - 1) {
System.out.print(", ");
} else {
System.out.print("}");
}
}
System.out.println();
}
}
public static void recursive(Lecture[] lectureList,
ArrayList<Classroom> classroomList, int curLecture) {
for (int i = 0; i < classroomList.size(); i++) {
// if the classroom is smaller than the lecture we cna stop as the
// lists are sorted so all other lectures will be to big for the
// current classroom
if (lectureList[curLecture].size > classroomList.get(i).size) {
return;
}
//Match the current classroom to the current lecture and add to the working matching
cur.set(curLecture, new Pair(classroomList.get(i), lectureList[curLecture]));
//If there are more lectures to do then remove the used classroom and recursively call.
if (curLecture < lectureList.length - 1) {
Classroom tmp = classroomList.remove(i);
recursive(lectureList, classroomList, curLecture + 1);
classroomList.add(i, tmp);
}
// If no Lectures left then add this matching to the set of all matchings.
else {
ArrayList<Pair> copy = (ArrayList<Pair>) cur.clone();
set.add(copy);
}
}
}
}
class Classroom implements Comparable<Classroom> {
int size;
int number;
public Classroom(int s, int n) {
size = s;
number = n;
}
@Override
public int compareTo(Classroom o) {
return Integer.compare(this.size, o.size);
}
public String toString() {
return number + " (" + size + ")";
}
}
class Lecture implements Comparable<Lecture> {
int size;
int number;
public Lecture(int s, int n) {
size = s;
number = n;
}
@Override
public int compareTo(Lecture o) {
return Integer.compare(this.size, o.size);
}
public String toString() {
return number + " (" + size + ")";
}
}
class Pair {
Classroom c;
Lecture l;
public Pair(Classroom c, Lecture l) {
this.c = c;
this.l = l;
}
}
This gives the output
{Lecture 1 (50): Classroom 3 (100), Lecture 3 (50): Classroom 1 (50), Lecture 2 (70): Classroom 2 (70)}
{Lecture 1 (50): Classroom 2 (70), Lecture 3 (50): Classroom 1 (50), Lecture 2 (70): Classroom 3 (100)}
{Lecture 1 (50): Classroom 1 (50), Lecture 3 (50): Classroom 3 (100), Lecture 2 (70): Classroom 2 (70)}
{Lecture 1 (50): Classroom 1 (50), Lecture 3 (50): Classroom 2 (70), Lecture 2 (70): Classroom 3 (100)}
Upvotes: 1
Reputation: 449
Here is an answer using Maps instead of arrays:
public Set<Map<Lecture, ClassRoom>> allocateRooms(List<Lecture> lectures, List<ClassRoom> classRooms){
Set<Map<Lecture, ClassRoom>> returnSet = new LinkedHashSet<>();
for(Lecture l: lectures){
for (ClassRoom c: classRooms){
Map<Lecture, ClassRoom> n = new HashMap<>();
n.put(l,c);
}
}
return returnSet;
}
Upvotes: 0
Reputation: 449
The algorithm in itself might look something like this using an nested for each loop:
public Set<Object[]> allocateRooms(List<Lecture> lectures, List<ClassRoom> classRooms){
Set<Object[]> returnSet = new LinkedHashSet<>();
for(Lecture l: lectures){
for (ClassRoom c: classRooms){
Object[] n = new Object[2];
n[0] = c;
n[1] = l;
returnSet.add(n);
}
}
return returnSet;
}
Upvotes: 0
Reputation: 292
Code below will give you all the matches, you can use them like whatever you want
HasMap<Integer, Integer> match = new HashMap<Integer, Integer>();
for(int i = 0; i < 3; i++) {
for(int j = 0; j < 3; j++) {
if(classroom[i] >= lecture[j]) {
match.add(lecture[j], classroom[i]);
}
}
}
if you want seperate maps like for every classroom or lecture you can try this(example for classrooms)
HashMap<Integer, Integer> classroom1 = new HashMap<Integer, Integer>();
HashMap<Integer, Integer> classroom2 = new HashMap<Integer, Integer>();
HashMap<Integer, Integer> classroom3 = new HashMap<Integer, Integer>();
for(int i = 0; i < 3; i++) {
for(int j = 0; j < 3; j++) {
if(i == 0) {
if(classroom[i] >= lecture[j]) {
classroom1.add(lecture[j], classroom[i]);
}
}
if(i == 1) {
if(classroom[i] >= lecture[j]) {
classroom2.add(lecture[j], classroom[i]);
}
}
if(i == 2) {
if(classroom[i] >= lecture[j]) {
classroom3.add(lecture[j], classroom[i]);
}
}
}
}
After this you can create map of maps. Don't mind about correcting me or adding something. Have a good day!
Upvotes: 0