Reputation: 53
I have a pandas dataframe named df like this:
0 2J-AAB1 AA AA CC CC AA AA CC AA CC
1 2J-AAB4 AA TA TC TC GA AA CC AA CC
2 2J-AAB6 AA TA CC CC AA AA CC AA CC
3 2J-AAB8 AA TT TT TT GG AA TC CC CC
4 2J-AAB9 AA TT TT TT GG AA TC CC CC
5 2J-AABA AA AA CC CC GA AG CC AA CG
6 2J-AABE AA TT TT TT GG AA TC CA CC
7 2J-AABF AA AA CC CC AA AA CC AA CC
8 2J-AABH AA TT TT TT GG AA CC AA CC
9 2J-AABI AA AA CC CC AA AA CC AA CG
I want to split columns like "AA,AT,CC" etc all into two columns and get new data-frame like:
0 2J-AAB1 A A A A C C C C A A A A C C A A C C
1 2J-AAB4 A A T A T C T C G A A A C C A A C C
2 2J-AAB6 A A T A C C C C A A A A C C A A C C
3 2J-AAB8 A A T T T T T T G G A A T C C C C C
4 2J-AAB9 A A T T T T T T G G A A T C C C C C
5 2J-AABA A A A A C C C C G A A G C C A A C G
6 2J-AABE A A T T T T T T G G A A T C C A C C
7 2J-AABF A A A A C C C C A A A A C C A A C C
8 2J-AABH A A T T T T T T G G A A C C A A C C
9 2J-AABI A A A A C C C C A A A A C C A A C G
Is there a pythonic way to make it? Any suggestion are appreciated .. Thanks in advance
Upvotes: 1
Views: 3389
Reputation: 24535
Very interesting question. One can solve it stepwise as follows:
dfpart = df.iloc[:,1:] # get columns to be split
ll = dfpart.values # get values as list of lists
sl = list(map(lambda x: "".join(x), ll)) # join all rows into strings
sl = list(map(list, sl)) # split strings to lists of characters
newdf = pd.DataFrame(data=sl) # create dataframe from new lists
newdf = pd.concat([df.iloc[:,0], newdf], axis=1) # restore first column
newdf.columns= range(len(newdf.columns)) # correct column numbers;
print(newdf)
Output:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 2J-AAB1 A A A A C C C C A A A A C C A A C C
1 2J-AAB4 A A T A T C T C G A A A C C A A C C
2 2J-AAB6 A A T A C C C C A A A A C C A A C C
3 2J-AAB8 A A T T T T T T G G A A T C C C C C
4 2J-AAB9 A A T T T T T T G G A A T C C C C C
5 2J-AABA A A A A C C C C G A A G C C A A C G
6 2J-AABE A A T T T T T T G G A A T C C A C C
7 2J-AABF A A A A C C C C A A A A C C A A C C
8 2J-AABH A A T T T T T T G G A A C C A A C C
9 2J-AABI A A A A C C C C A A A A C C A A C G
Upvotes: 0
Reputation: 3852
You have a good answer, but I started typing this so figure I'd leave it up.
You can use apply
with split
and list
to output to multiple columns.
For your dataframe with labels:
A B
0 "2J-AAB1" "AA"
1 "2J-AAB4" "AA"
2 "2J-AAB6" "AA"
3 "2J-AAB8" "AA"
df['B1'], df['B2'] = zip(*df['B'].apply(lambda x: list(x)))
This gives you:
A B B2 B1
0 2J-AAB1 AA A A
1 2J-AAB4 AA A A
2 2J-AAB6 AA A A
3 2J-AAB8 AA A A
For more columns, or with specific columns names, can do:
for i in df.columns[1:]:
df['{}1'.format(i)], df['{}2'.format(i)] = zip(*df[i].apply(lambda x: list(x)))
This gives:
0 1 2 3 4 5 6 7 8 9 11 12 21 22 31 32 41 42 51 52 61 62 71 72 81 82 91 92
0 2J-AAB1 AA AA CC CC AA AA CC AA CC A A A A C C C C A A A A C C A A C C
1 2J-AAB4 AA TA TC TC GA AA CC AA CC A A T A T C T C G A A A C C A A C C
2 2J-AAB6 AA TA CC CC AA AA CC AA CC A A T A C C C C A A A A C C A A C C
3 2J-AAB8 AA TT TT TT GG AA TC CC CC A A T T T T T T G G A A T C C C C C
4 2J-AAB9 AA TT TT TT GG AA TC CC CC A A T T T T T T G G A A T C C C C C
5 2J-AABA AA AA CC CC GA AG CC AA CG A A A A C C C C G A A G C C A A C G
6 2J-AABE AA TT TT TT GG AA TC CA CC A A T T T T T T G G A A T C C A C C
7 2J-AABF AA AA CC CC AA AA CC AA CC A A A A C C C C A A A A C C A A C C
8 2J-AABH AA TT TT TT GG AA CC AA CC A A T T T T T T G G A A C C A A C C
9 2J-AABI AA AA CC CC AA AA CC AA CG A A A A C C C C A A A A C C A A C G
Upvotes: 0
Reputation: 210842
Try this:
In [60]: x = df.set_index(1).stack().str.extractall('(.)').unstack([-2, -1]).reset_index()
In [61]: x.columns = np.arange(len(x.columns))
In [62]: x
Out[62]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 2J-AAB1 A A A A C C C C A A A A C C A A C C
1 2J-AAB4 A A T A T C T C G A A A C C A A C C
2 2J-AAB6 A A T A C C C C A A A A C C A A C C
3 2J-AAB8 A A T T T T T T G G A A T C C C C C
4 2J-AAB9 A A T T T T T T G G A A T C C C C C
5 2J-AABA A A A A C C C C G A A G C C A A C G
6 2J-AABE A A T T T T T T G G A A T C C A C C
7 2J-AABF A A A A C C C C A A A A C C A A C C
8 2J-AABH A A T T T T T T G G A A C C A A C C
9 2J-AABI A A A A C C C C A A A A C C A A C G
Upvotes: 5