Reputation: 5474
Here is a simple scenario I constructed:
Say I have the following:
set.seed(1)
id<-sample(3,10,replace = TRUE)
n<-1:10
x<-round(runif(10,30,40))
df<-data.frame(id,n,x)
df
id n x
1 1 1 32
2 2 2 32
3 2 3 37
4 3 4 34
5 1 5 38
6 3 6 35
7 3 7 37
8 2 8 40
9 2 9 34
10 1 10 38
How do I elegantly calculate x.lag where x.lag is a previous x for the same id or 0 if a previous value does not exist.
This is what I did but I'm not happy with it:
df$x.lag<-rep(0,10)
for (id in 1:3)
df[df$id==id,]$x.lag<-c(0,df[df$id==id,]$x)[1:sum(df$id==id)]
df
id n x x.lag
1 1 1 32 0
2 2 2 32 0
3 2 3 37 32
4 3 4 34 0
5 1 5 38 32
6 3 6 35 34
7 3 7 37 35
8 2 8 40 37
9 2 9 34 40
10 1 10 38 38
Upvotes: 2
Views: 43
Reputation: 887981
We can use data.table
library(data.table)
setDT(df)[, x.lag := shift(x, fill=0), id]
Or with dplyr
library(dplyr)
df %>%
group_by(id) %>%
mutate(x.lag = lag(x, default = 0))
Or using ave
from base R
df$x.lag <- with(df, ave(x, id, FUN = function(x) c(0, x[-length(x)])))
df$x.lag
#[1] 0 0 32 0 32 34 35 37 40 38
Upvotes: 5