Noy D
Noy D

Reputation: 1

Finding length between a lot of elements

I have an image of a cytoskeleton. There are a lot of small objects inside and I want to calculate the length between all of them in every axis and to get a matrix with all this data. I am trying to do this in matlab.

My final aim is to figure out if there is any axis with a constant distance between the object. I've tried bwdist and to use connected components without any luck. Do you have any other ideas?

enter image description here

Upvotes: 0

Views: 48

Answers (2)

yotabyte
yotabyte

Reputation: 188

If i understand your question correctly, the first step is to obtain all of the objects center of mass points in the image as (x,y) coordinates. Then, you can easily compute all of the distances between all points. I suggest taking a look on a histogram of those distances which may provide some information as to the nature of distance distribution (for example if it is uniformly random, or are there any patterns that appear).

Obtaining the center of mass points is not an easy task, consider transforming the image into a binary one, or some sort of background subtraction with blob detection or/and edge detector.

For building a histogram you can use histogram.

Upvotes: 0

Zizy Archer
Zizy Archer

Reputation: 1390

So, the end goal is that you want to globally stretch this image in a certain direction (linearly) so that the distances between nearest pairs end up the closest together, hopefully the same? Or may you do more complex stretching ? (note that with arbitrarily complex one you can always make it work :) )

If linear global one, distance in x' and y' is going to be a simple multiplication of the old distance in x and y, applied to every pair of points. So, the final euclidean distance will end up being sqrt((SX*x)^2 + (SY*y)^2), with SX being stretch in x and SY stretch in y; X and Y are distances in X and Y between pairs of points.

If you are interested in just "the same" part, solution is not so difficult:

Find all objects of interest and put their X and Y coordinates in a N*2 matrix.
Calculate distances between all pairs of objects in X and Y. You will end up with 2 matrices sized N*N (with 0 on the diagonal, symmetric and real, not sure what is the name for that type of matrix).
Find minimum distance (say this is between A an B).

You probably already have this. Now:

Take C. Make N-1 transformations, which all end up in C->nearestToC = A->B. It is a simple system of equations, you have X1^2*SX^2+Y1^2*SY^2 = X2^2*SX^2+Y2*SY^2.
So, first say A->B = C->A, then A->B = C->B, then A->B = C->D etc etc. Make sure transformation is normalized => SX^2 + SY^2 = 1. If it cannot be found, the only valid transformation is SX = SY = 0 which means you don't have solution here. Obviously, SX and SY need to be real.
Note that this solution is unique except in case where X1 = X2 and Y1 = Y2. In this case, grab some other point than C to find this transformation.
For each transformation check the remaining points and find all nearest neighbours of them. If distance is always the same as these 2 (to a given tolerance), great, you found your transformation. If not, this transformation does not work and you should continue with the next one.

If you want a transformation that minimizes variations between distances (but doesn't require them to be nearly equal), I would do some optimization method and search for a minimum - I don't know how to find an exact solution otherwise. I would pick this also in case you don't have linear or global stretch.

Upvotes: 0

Related Questions