Reputation: 26048
I'm working on a segmentation problem in Keras and I want to display segmentation results at the end of every training epoch.
I want something similar to Tensorflow: How to Display Custom Images in Tensorboard (e.g. Matplotlib Plots), but using Keras. I know that Keras has the TensorBoard
callback but it seems limited for this purpose.
I know this would break the Keras backend abstraction, but I'm interested in using TensorFlow backend anyway.
Is it possible to achieve that with Keras + TensorFlow?
Upvotes: 28
Views: 20903
Reputation: 1502
The existing answers here and elsewhere were an excellent starting point, but I found they needed some tweaking to work with Tensorflow 2.x and keras flow_from_directory
*. This is what I came up with.
My aim was to verify the data augmentation process, so the images I have written to tensorboard are the augmented training data. That's not exactly what the OP wanted. They would have to change on_batch_end
to on_epoch_end
and access the model outputs (which is something I haven't looked into, but I'm sure it's possible.)
Similar to Fabio Perez's answer with the astronaut, you will be able to scroll through the epochs by dragging the orange slider, showing differently augmented copies of each image that has been written to tensorboard. Careful with large datasets trained over many epochs. Since this routine saves a copy of every 1000th image in every epoch, you might end up with a large tfevents file.
the callback function, saved as tensorflow_image_callback.py
import tensorflow as tf
import math
class TensorBoardImage(tf.keras.callbacks.Callback):
def __init__(self, logdir, train, validation=None):
super(TensorBoardImage, self).__init__()
self.logdir = logdir
self.train = train
self.validation = validation
self.file_writer = tf.summary.create_file_writer(logdir)
def on_batch_end(self, batch, logs):
images_or_labels = 0 #0=images, 1=labels
imgs = self.train[batch][images_or_labels]
#calculate epoch
n_batches_per_epoch = self.train.samples / self.train.batch_size
epoch = math.floor(self.train.total_batches_seen / n_batches_per_epoch)
#since the training data is shuffled each epoch, we need to use the index_array to find something which uniquely
#identifies the image and is constant throughout training
first_index_in_batch = batch * self.train.batch_size
last_index_in_batch = first_index_in_batch + self.train.batch_size
last_index_in_batch = min(last_index_in_batch, len(self.train.index_array))
img_indices = self.train.index_array[first_index_in_batch : last_index_in_batch]
#convert float to uint8, shift range to 0-255
imgs -= tf.reduce_min(imgs)
imgs *= 255 / tf.reduce_max(imgs)
imgs = tf.cast(imgs, tf.uint8)
with self.file_writer.as_default():
for ix,img in enumerate(imgs):
img_tensor = tf.expand_dims(img, 0) #tf.summary needs a 4D tensor
#only post 1 out of every 1000 images to tensorboard
if (img_indices[ix] % 1000) == 0:
#instead of img_filename, I could just use str(img_indices[ix]) as a unique identifier
#but this way makes it easier to find the unaugmented image
img_filename = self.train.filenames[img_indices[ix]]
tf.summary.image(img_filename, img_tensor, step=epoch)
integrate it with your training like this:
train_augmentation = keras.preprocessing.image.ImageDataGenerator(rotation_range=20,
shear_range=10,
zoom_range=0.2,
width_shift_range=0.2,
height_shift_range=0.2,
brightness_range=[0.8, 1.2],
horizontal_flip=False,
vertical_flip=False
)
train_data_generator = train_augmentation.flow_from_directory(directory='/some/path/train/',
class_mode='categorical',
batch_size=batch_size,
shuffle=True
)
valid_augmentation = keras.preprocessing.image.ImageDataGenerator()
valid_data_generator = valid_augmentation.flow_from_directory(directory='/some/path/valid/',
class_mode='categorical',
batch_size=batch_size,
shuffle=False
)
tensorboard_log_dir = '/some/path'
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=tensorboard_log_dir, update_freq='batch')
tensorboard_image_callback = tensorflow_image_callback.TensorBoardImage(logdir=tensorboard_log_dir, train=train_data_generator, validation=valid_data_generator)
model.fit(x=train_data_generator,
epochs=n_epochs,
validation_data=valid_data_generator,
validation_freq=1,
callbacks=[
tensorboard_callback,
tensorboard_image_callback
])
*I later realised that flow_from_directory
has an option save_to_dir
which would have been sufficient for my purposes. Simply adding that option is much simpler, but using a callback like this has additional features of displaying the images in Tensorboard, where multiple versions of the same image can be compared, and allowing the number of saved images to be customised. save_to_dir
saves a copy of every single augmented image, which quickly adds up to a lot of space.
Upvotes: 0
Reputation: 49
class customModelCheckpoint(Callback):
def __init__(self, log_dir='../logs/', feed_inputs_display=None):
super(customModelCheckpoint, self).__init__()
self.seen = 0
self.feed_inputs_display = feed_inputs_display
self.writer = tf.summary.FileWriter(log_dir)
def custom_set_feed_input_to_display(self, feed_inputs_display):
self.feed_inputs_display = feed_inputs_display
# A callback has access to its associated model through the class property self.model.
def on_batch_end(self, batch, logs = None):
logs = logs or {}
self.seen += 1
if self.seen % 8 == 0: # every 200 iterations or batches, plot the costumed images using TensorBorad;
summary_str = []
feature = self.feed_inputs_display[0][0]
disp_gt = self.feed_inputs_display[0][1]
disp_pred = self.model.predict_on_batch(feature)
summary_str.append(tf.summary.image('disp_input/{}'.format(self.seen), feature, max_outputs=4))
summary_str.append(tf.summary.image('disp_gt/{}'.format(self.seen), disp_gt, max_outputs=4))
summary_str.append(tf.summary.image('disp_pred/{}'.format(self.seen), disp_pred, max_outputs=4))
summary_st = tf.summary.merge(summary_str)
summary_s = K.get_session().run(summary_st)
self.writer.add_summary(summary_s, global_step=self.seen)
self.writer.flush()
Then you can call your custom callback and write the image in tensorboard
callback_mc = customModelCheckpoint(log_dir='../logs/', feed_inputs_display=[(a, b)])
callback_tb = TensorBoard(log_dir='../logs/', histogram_freq=0, write_graph=True, write_images=True)
callback = []
def data_gen(fr1, fr2):
while True:
hdr_arr = []
ldr_arr = []
for i in range(args['batch_size']):
try:
ldr = pickle.load(fr2)
hdr = pickle.load(fr1)
except EOFError:
fr1 = open(args['data_h_hdr'], 'rb')
fr2 = open(args['data_h_ldr'], 'rb')
hdr_arr.append(hdr)
ldr_arr.append(ldr)
hdr_h = np.array(hdr_arr)
ldr_h = np.array(ldr_arr)
gen = aug.flow(hdr_h, ldr_h, batch_size=args['batch_size'])
out = gen.next()
a = out[0]
b = out[1]
callback_mc.custom_set_feed_input_to_display(feed_inputs_display=[(a, b)])
yield [a, b]
callback.append(callback_tb)
callback.append(callback_mc)
H = model.fit_generator(data_gen(fr1, fr2), steps_per_epoch=100, epochs=args['epoch'], callbacks=callback)
Upvotes: 0
Reputation: 909
I'm trying to display matplotlib plots to the tensorboard (useful incases of plotting statistics, heatmaps, etc). It can be used for the general case also.
class AttentionLogger(keras.callbacks.Callback):
def __init__(self, val_data, logsdir):
super(AttentionLogger, self).__init__()
self.logsdir = logsdir # where the event files will be written
self.validation_data = val_data # validation data generator
self.writer = tf.summary.FileWriter(self.logsdir) # creating the summary writer
@tfmpl.figure_tensor
def attention_matplotlib(self, gen_images):
'''
Creates a matplotlib figure and writes it to tensorboard using tf-matplotlib
gen_images: The image tensor of shape (batchsize,width,height,channels) you want to write to tensorboard
'''
r, c = 5,5 # want to write 25 images as a 5x5 matplotlib subplot in TBD (tensorboard)
figs = tfmpl.create_figures(1, figsize=(15,15))
cnt = 0
for idx, f in enumerate(figs):
for i in range(r):
for j in range(c):
ax = f.add_subplot(r,c,cnt+1)
ax.set_yticklabels([])
ax.set_xticklabels([])
ax.imshow(gen_images[cnt]) # writes the image at index cnt to the 5x5 grid
cnt+=1
f.tight_layout()
return figs
def on_train_begin(self, logs=None): # when the training begins (run only once)
image_summary = [] # creating a list of summaries needed (can be scalar, images, histograms etc)
for index in range(len(self.model.output)): # self.model is accessible within callback
img_sum = tf.summary.image('img{}'.format(index), self.attention_matplotlib(self.model.output[index]))
image_summary.append(img_sum)
self.total_summary = tf.summary.merge(image_summary)
def on_epoch_end(self, epoch, logs = None): # at the end of each epoch run this
logs = logs or {}
x,y = next(self.validation_data) # get data from the generator
# get the backend session and sun the merged summary with appropriate feed_dict
sess_run_summary = K.get_session().run(self.total_summary, feed_dict = {self.model.input: x['encoder_input']})
self.writer.add_summary(sess_run_summary, global_step =epoch) #finally write the summary!
Then you will have to give it as an argument to fit/fit_generator
#val_generator is the validation data generator
callback_image = AttentionLogger(logsdir='./tensorboard', val_data=val_generator)
... # define the model and generators
# autoencoder is the model, note how callback is suppiled to fit_generator
autoencoder.fit_generator(generator=train_generator,
validation_data=val_generator,
callbacks=callback_image)
In my case where I'm displaying attention maps (as heatmaps) to tensorboard, this is the output.
Upvotes: 3
Reputation: 26048
So, the following solution works well for me:
import tensorflow as tf
def make_image(tensor):
"""
Convert an numpy representation image to Image protobuf.
Copied from https://github.com/lanpa/tensorboard-pytorch/
"""
from PIL import Image
height, width, channel = tensor.shape
image = Image.fromarray(tensor)
import io
output = io.BytesIO()
image.save(output, format='PNG')
image_string = output.getvalue()
output.close()
return tf.Summary.Image(height=height,
width=width,
colorspace=channel,
encoded_image_string=image_string)
class TensorBoardImage(keras.callbacks.Callback):
def __init__(self, tag):
super().__init__()
self.tag = tag
def on_epoch_end(self, epoch, logs={}):
# Load image
img = data.astronaut()
# Do something to the image
img = (255 * skimage.util.random_noise(img)).astype('uint8')
image = make_image(img)
summary = tf.Summary(value=[tf.Summary.Value(tag=self.tag, image=image)])
writer = tf.summary.FileWriter('./logs')
writer.add_summary(summary, epoch)
writer.close()
return
tbi_callback = TensorBoardImage('Image Example')
Just pass the callback to fit
or fit_generator
.
Note that you can also run some operations using the model
inside the callback. For example, you may run the model on some images to check its performance.
Upvotes: 41
Reputation: 434
Based on the above answers and my own searching, I provide the following code to finish the following things using TensorBoard in Keras:
x
and ground truth disparity map gt
;x
and ground truth 'gt', at some iteration time;y
of your model, at some iteration time.First of all, you have to make your costumed callback class with Callback
.
Note
that a callback has access to its associated model through the class property self.model
. Also Note
: you have to feed the input to the model with feed_dict, if you want to get and display the output of your model.
from keras.callbacks import Callback
import numpy as np
from keras import backend as K
import tensorflow as tf
import cv2
# make the 1 channel input image or disparity map look good within this color map. This function is not necessary for this Tensorboard problem shown as above. Just a function used in my own research project.
def colormap_jet(img):
return cv2.cvtColor(cv2.applyColorMap(np.uint8(img), 2), cv2.COLOR_BGR2RGB)
class customModelCheckpoint(Callback):
def __init__(self, log_dir='./logs/tmp/', feed_inputs_display=None):
super(customModelCheckpoint, self).__init__()
self.seen = 0
self.feed_inputs_display = feed_inputs_display
self.writer = tf.summary.FileWriter(log_dir)
# this function will return the feeding data for TensorBoard visualization;
# arguments:
# * feed_input_display : [(input_yourModelNeed, left_image, disparity_gt ), ..., (input_yourModelNeed, left_image, disparity_gt), ...], i.e., the list of tuples of Numpy Arrays what your model needs as input and what you want to display using TensorBoard. Note: you have to feed the input to the model with feed_dict, if you want to get and display the output of your model.
def custom_set_feed_input_to_display(self, feed_inputs_display):
self.feed_inputs_display = feed_inputs_display
# copied from the above answers;
def make_image(self, numpy_img):
from PIL import Image
height, width, channel = numpy_img.shape
image = Image.fromarray(numpy_img)
import io
output = io.BytesIO()
image.save(output, format='PNG')
image_string = output.getvalue()
output.close()
return tf.Summary.Image(height=height, width=width, colorspace= channel, encoded_image_string=image_string)
# A callback has access to its associated model through the class property self.model.
def on_batch_end(self, batch, logs = None):
logs = logs or {}
self.seen += 1
if self.seen % 200 == 0: # every 200 iterations or batches, plot the costumed images using TensorBorad;
summary_str = []
for i in range(len(self.feed_inputs_display)):
feature, disp_gt, imgl = self.feed_inputs_display[i]
disp_pred = np.squeeze(K.get_session().run(self.model.output, feed_dict = {self.model.input : feature}), axis = 0)
#disp_pred = np.squeeze(self.model.predict_on_batch(feature), axis = 0)
summary_str.append(tf.Summary.Value(tag= 'plot/img0/{}'.format(i), image= self.make_image( colormap_jet(imgl)))) # function colormap_jet(), defined above;
summary_str.append(tf.Summary.Value(tag= 'plot/disp_gt/{}'.format(i), image= self.make_image( colormap_jet(disp_gt))))
summary_str.append(tf.Summary.Value(tag= 'plot/disp/{}'.format(i), image= self.make_image( colormap_jet(disp_pred))))
self.writer.add_summary(tf.Summary(value = summary_str), global_step =self.seen)
Next, pass this callback object to fit_generator()
for your model, like:
feed_inputs_4_display = some_function_you_wrote()
callback_mc = customModelCheckpoint( log_dir = log_save_path, feed_inputd_display = feed_inputs_4_display)
# or
callback_mc.custom_set_feed_input_to_display(feed_inputs_4_display)
yourModel.fit_generator(... callbacks = callback_mc)
...
Now your can run the code, and go the TensorBoard host to see the costumed image display. For example, this is what I got using the aforementioned code:
Done! Enjoy!
Upvotes: 11
Reputation: 21622
Here is example how to draw landmarks on image:
class CustomCallback(keras.callbacks.Callback):
def __init__(self, model, generator):
self.generator = generator
self.model = model
def tf_summary_image(self, tensor):
import io
from PIL import Image
tensor = tensor.astype(np.uint8)
height, width, channel = tensor.shape
image = Image.fromarray(tensor)
output = io.BytesIO()
image.save(output, format='PNG')
image_string = output.getvalue()
output.close()
return tf.Summary.Image(height=height,
width=width,
colorspace=channel,
encoded_image_string=image_string)
def on_epoch_end(self, epoch, logs={}):
frames_arr, landmarks = next(self.generator)
# Take just 1st sample from batch
frames_arr = frames_arr[0:1,...]
y_pred = self.model.predict(frames_arr)
# Get last frame for which we have done predictions
img = frames_arr[0,-1,:,:]
img = img * 255
img = img[:, :, ::-1]
img = np.copy(img)
landmarks_gt = landmarks[-1].reshape(-1,2)
landmarks_pred = y_pred.reshape(-1,2)
img = draw_landmarks(img, landmarks_gt, (0,255,0))
img = draw_landmarks(img, landmarks_pred, (0,0,255))
image = self.tf_summary_image(img)
summary = tf.Summary(value=[tf.Summary.Value(image=image)])
writer = tf.summary.FileWriter('./logs')
writer.add_summary(summary, epoch)
writer.close()
return
Upvotes: 0
Reputation: 51
I believe I found a better way to log such custom images to tensorboard making use of the tf-matplotlib. Here is how...
class TensorBoardDTW(tf.keras.callbacks.TensorBoard):
def __init__(self, **kwargs):
super(TensorBoardDTW, self).__init__(**kwargs)
self.dtw_image_summary = None
def _make_histogram_ops(self, model):
super(TensorBoardDTW, self)._make_histogram_ops(model)
tf.summary.image('dtw-cost', create_dtw_image(model.output))
One just need to overwrite the _make_histogram_ops method from the TensorBoard callback class to add the custom summary. In my case, the create_dtw_image
is a function that creates an image using the tf-matplotlib.
Regards,.
Upvotes: 1
Reputation: 725
Similarily, you might want to try tf-matplotlib. Here's a scatter plot
import tensorflow as tf
import numpy as np
import tfmpl
@tfmpl.figure_tensor
def draw_scatter(scaled, colors):
'''Draw scatter plots. One for each color.'''
figs = tfmpl.create_figures(len(colors), figsize=(4,4))
for idx, f in enumerate(figs):
ax = f.add_subplot(111)
ax.axis('off')
ax.scatter(scaled[:, 0], scaled[:, 1], c=colors[idx])
f.tight_layout()
return figs
with tf.Session(graph=tf.Graph()) as sess:
# A point cloud that can be scaled by the user
points = tf.constant(
np.random.normal(loc=0.0, scale=1.0, size=(100, 2)).astype(np.float32)
)
scale = tf.placeholder(tf.float32)
scaled = points*scale
# Note, `scaled` above is a tensor. Its being passed `draw_scatter` below.
# However, when `draw_scatter` is invoked, the tensor will be evaluated and a
# numpy array representing its content is provided.
image_tensor = draw_scatter(scaled, ['r', 'g'])
image_summary = tf.summary.image('scatter', image_tensor)
all_summaries = tf.summary.merge_all()
writer = tf.summary.FileWriter('log', sess.graph)
summary = sess.run(all_summaries, feed_dict={scale: 2.})
writer.add_summary(summary, global_step=0)
When executed, this results in the following plot inside Tensorboard
Note that tf-matplotlib takes care about evaluating any tensor inputs, avoids pyplot
threading issues and supports blitting for runtime critical plotting.
Upvotes: 2