Reputation: 411
I have an image containing cells. I can't provide it, but it is similar to the image used as an example here: http://blogs.mathworks.com/steve/2006/06/02/cell-segmentation/ but without the characteristic nuclei.
I have done some processing and am now left with a pretty good segmentation, but some cells are close to each other and I need to split them. Most of them consist of more or less overlapping ellipses.
I am certain that a few iterations of simple erosion will split almost all of those regions. But some of the other cells are so small, they will disappear before the others split. Therefore I need an algorithm that erodes the image, allowing region splitting, but does not delete the last pixel of a region.
I want to use watershed afterwards to segment the cells.
I guess I could implement this on my own by searching for cennected regions and then tracking that I don't lose any or something like that, but the implementation seems messy even in my head and I think there must be an easier way. So my question is basically, what's the name of this so I can google an implementation? Or if there is no off-the-shelf solution, what's an elegant way of implementing this without dozens of iterations and for loops etc.
(Language is python)
Upvotes: 1
Views: 1410
Reputation: 5898
It's a classical problem, and if the overlap between cells is too important, let's say 40% or more, then there is not a good solution.
However, if the overlap is not important, here is the solution:
You will get something like this example.
Upvotes: 1